Anchorless 23-230 PrPC interactomics for elucidation of PrPC protective role

Mol Neurobiol. 2014 Jun;49(3):1385-99. doi: 10.1007/s12035-013-8616-2. Epub 2014 Jan 5.

Abstract

Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann-Sträussler-Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23-230 PrPC (Δ23-230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23-230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23-230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23-230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23-230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23-230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1-253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23-230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Cell Line
  • Cell Survival / physiology
  • Humans
  • Mice
  • PrPC Proteins / biosynthesis*
  • PrPC Proteins / genetics*

Substances

  • PrPC Proteins