The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum

PLoS One. 2013 Dec 31;8(12):e85519. doi: 10.1371/journal.pone.0085519. eCollection 2013.

Abstract

The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism*
  • Adenosine Triphosphatases / metabolism
  • Biological Transport
  • Cell Cycle Proteins / metabolism
  • Endoplasmic Reticulum / metabolism*
  • HeLa Cells
  • Homeostasis
  • Humans
  • Manganese / metabolism*
  • Microsomes / metabolism
  • Mutation
  • Saccharomyces cerevisiae / cytology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Sequence Homology, Amino Acid

Substances

  • ATP-Binding Cassette Transporters
  • Cell Cycle Proteins
  • SPF1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Manganese
  • Adenosine Triphosphatases

Grants and funding

YC was supported by the Minerva foundation. MS and YC were supported by an ERC StG (260395). MM was supported by ITN network Sphingonet. OC was funded by the Clarendon Fund. FMP was supported by Sphingonet. HR and IR were supported by the NCCR Chemical Biology, Swiss National Science Foundation, SystemsX.ch, and Sphingonet. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.