Particle Deposition on Microporous Membranes Can Be Enhanced or Reduced by Salt Gradients

Langmuir. 2014 Jan 28;30(3):793-9. doi: 10.1021/la4044107. Epub 2014 Jan 10.

Abstract

Colloidal particle deposition on membranes is a continuing scientific and technological challenge. In this paper we examine the role of a previously unexplored phenomenon-diffusiophoretic particle transport toward a membrane-in relation to fouling. Diffusiophoresis is an electrokinetic transport mechanism that arises in salt gradients, especially when the ions have different diffusion coefficients. Through experiments conducted with salt diffusing across microdialysis membranes, with no advection, we show experimentally that diffusiophoresis induces colloidal deposition on the surface of microporous surfaces. We used transient salt (NaCl, KCl, LiCl) gradients and fundamental electrokinetic modeling to assess the role of diffusiophoresis in colloidal fouling. Based on (i) difference in diffusion coefficients of ions, (ii) zeta potential on the particles, and (iii) ionic gradient applied across the walls of the membrane, colloidal fouling could be both quantitatively and qualitatively predicted. Our understanding enabled us to stop particle deposition by adding calcium carbonate outside the membrane, which generates a stronger electric field in a direction opposite to that created by salt diffusing from the membrane. We propose that accounting for this diffusiophoretic mode of particle deposition is important in understanding membrane fouling.