Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;121(2):732-7.
doi: 10.1210/endo-121-2-732.

A kinetic analysis of hepatocyte responses to a glucagon pulse: mechanism and metabolic consequences of differences in response decay times

A kinetic analysis of hepatocyte responses to a glucagon pulse: mechanism and metabolic consequences of differences in response decay times

D S Weigle et al. Endocrinology. 1987 Aug.

Abstract

Pulsatile administration of glucagon to perifused rat hepatocytes stimulates hepatocyte glucose production (HGP) more effectively than continuous administration. Having established that this effect was due to delayed relaxation of glucagon-stimulated HGP (t1/2 for decay = 3.54 +/- 0.60 min) we wished to examine the mechanism of response termination. Delayed dissociation of glucagon from its receptor was excluded by the brisk washout of [125I]glucagon from perifusion columns (t1/2 = 1.00 +/- 0.13) and the rapid decay in glucagon-stimulated cAMP released into the perifusion medium (t1/2 = 1.14 +/- 0.12). The relaxation of the HGP response to a pulse of administered cAMP was comparable to the decay in glucagon-stimulated HGP (t1/2 = 3.28 +/- 0.22). Furthermore, the phosphodiesterase inhibitor isobutyl-methylxanthine did not alter the decay of the HGP response to glucagon despite increasing the amplitude of the response (t1/2 = 3.04 +/- 0.36). These data place the rate-limiting step for HGP relaxation distal to cAMP generation and degradation. The decay of the beta-hydroxybutyrate response to a glucagon pulse was not different from the cAMP response (t1/2 = 1.14 +/- 0.23), whereas the decay of gluconeogenesis from lactate was not significantly different from HGP relaxation (t1/2 = 1.94 +/- 0.08). We conclude that rate-limiting events for HGP relaxation occur distal to the second messenger cascade; however, ketogenesis is more closely coupled to the kinetics of cAMP. These results may help to explain the absence of excessive ketosis during fasting in normal humans, who secrete glucagon episodically at 10- to 14-min intervals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources