An increasing body of evidence suggests that miRNAs are involved in fibrotic process of several organs including heart, lung and kidney. It has been observed recently that aberrant expression of miR-200s are associated with hepatic fibrosis. However, the role and underlying mechanism of miR-200s in hepatic fibrogenesis remains unknown. Here, we investigate the role of miR-200b in the activation of immortalized human hepatic stallate cells (HSCs), LX-2 cells. We firstly found that miR-200b significantly enhanced proliferation and migration of LX-2 cells. Secondly, our findings showed that miR-200b enhanced the phosphorylation of Akt, a downstream effector of phosphatidyl-inositol 3-Kinase (PI3K). FOG2, as the targets of fly miR-8 and human miR-200s, directly binds to p85α and inhibits the activation of the PI3K/Akt pathway. Here, we showed that FOG2 protein levels in LX-2 cells were suppressed significantly by miR-200b mimics. FOG2 knockdown by siRNAs activated the PI3K/Akt signaling, which increased cell growth and migration that mimicked the effect of miR-200b. Conversely, LY294002, a highly selective inhibitor of PI3K, could block phosphorylation of Akt and effect of miR-200b. In addition, we showed that miR-200b enhanced the expression of matrix metalloproteinase-2 (MMP-2), which may increase the migration of LX-2 cells. Finally, our results indicated that the expression of miR-200b was unregulated in the biliary atresia (BA) and associated with liver fibrotic progression. These data suggest a potential mechanism for Akt activation through FOG2 down-regulation by miR-200b that can lead to HSC growth and migration. In view of the putative pathogenic role of miR-200b in HSCs, miR-200b may constitute a potential marker for HSC activation and liver fibrosis progression.
Keywords: Biliary atresia; Hepatic stellate cells; Liver fibrosis; Migration; Proliferation; miR-200b.
Copyright © 2014 Elsevier Inc. All rights reserved.