Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species

PLoS Genet. 2014 Jan;10(1):e1004075. doi: 10.1371/journal.pgen.1004075. Epub 2014 Jan 9.


Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse") at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleus / genetics
  • Chimera / genetics*
  • Genome, Mitochondrial
  • Genotype
  • Hybridization, Genetic*
  • Polymorphism, Single Nucleotide
  • Reproductive Isolation*
  • Sequence Analysis, DNA
  • Sparrows / genetics*
  • Species Specificity

Grant support

We have received funding from the Research Council of Norway, grant number: 204523, Molecular Life Science (MLS), University of Oslo, Norway, grant number: NA, and Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway, grant number: NA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.