Modeling fence location and density at a regional scale for use in wildlife management

PLoS One. 2014 Jan 8;9(1):e83912. doi: 10.1371/journal.pone.0083912. eCollection 2014.

Abstract

Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing's impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana--an area consisting of 13 counties over 103,400 km(2). Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km(2) and mean density of 2.4 km of fencing per km(2). Using field data to assess model accuracy, Cohen's Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture
  • Animals
  • Animals, Wild / physiology*
  • Antelopes
  • Conservation of Natural Resources*
  • Geographic Information Systems
  • Geography
  • Models, Theoretical*
  • Montana
  • Ownership
  • Seasons

Grants and funding

The work was supported by: Kathryn Fuller Science for Nature Fund, (no grant number) (http://worldwildlife.org/initiatives/fuller-science-for-nature-fund); Alberta Conservation Association, 030-00-40-106-4000 (http://www.ab-conservation.com/); U.S. Bureau of Land Management, 090-50778 (http://www.blm.gov/wo/st/en.html); Montana Fish, Wildlife & Parks, Cooperative Agreement 080018 (http://fwp.mt.gov/); Saskatchewan Ministry of Environment, Permit 08FW111 (http://www.environment.gov.sk.ca/); University of Calgary, (no grant number) (http://www.ucalgary.com/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.