Purpose: Posterior stabilised (PS) total knee arthroplasty (TKA) design development that focused on restoring normal knee kinematics was followed by the introduction of reason-guided motion designs. Although all PS fixed-bearing knee designs were thought to have similar kinematics, reports show they have differing incidences and magnitudes of posterior femoral rollback and axial rotation. In this retrospective comparative study between two guided-motion total knee systems, we hypothesised that kinematic pattern has an influence on clinical and functional outcomes.
Methods: This study represents the continuation of a previously reported clinical and kinematics analysis. We retrospectively reviewed 347 patients treated with two different TKA designs: Scorpio NRG (Stryker Orthopedics) and Journey Bi-Cruciate Stabilised (BCS) knee system (Smith & Nephew). Two hundred and eighty-one patients were assessed clinically. Patients were divided into groups according to implanted TKA. Clinical evaluation with the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire was performed. Fifteen Scorpio NRG and 16 Journey BCS patients underwent video fluoroscopy during stair climbing, chair rising/sitting and step up/down at six months of follow-up.
Results: At an average 29 months of clinical follow-up, patients with Journey BCS TKAs reported better clinical results. Stiffness was more frequently reported in the Journey group (5.2 % vs 1.2 %), whereas anterior knee pain was observed in the Scorpio NRG group (1.9 %) only. Both prosthetic models reported different posterior translation of the medial and lateral contact points (CP) in all analysed motor tasks during knee flexion (BCS 10-18 mm; NRG Scorpio 2-3 mm). Both designs produced progressive external rotation of the femoral component relative to the tibia during flexion.
Conclusions: Journey BCS showed statistically significant better KOOS results. The higher posterior femoral rollback observed in the kinematic assessment of this design, associated with a better patellofemoral design, may be the reason for better clinical outcome. The reported cases of stiffness and anterolateral joint pain could be attributed to excessive medial and lateral tibiofemoral posterior translation. The NRG group demonstrated good axial rotation, but this was not coupled with physiological kinematic patterns. Patellofemoral pain can be explained by a less friendly femoral-groove design. TKA clinical-functional outcome and complications were highly influenced by the bearing geometry and kinematic pattern of prosthetic designs.