Comparing vector–host and SIR models for dengue transmission
- PMID: 24427785
Comparing vector–host and SIR models for dengue transmission
Abstract
Various simple mathematical models have been used to investigate dengue transmission. Some of these models explicitly model the mosquito population, while others model the mosquitoes implicitly in the transmission term. We study the impact of modeling assumptions on the dynamics of dengue in Thailand by fitting dengue hemorrhagic fever (DHF) data to simple vector–host and SIR models using Bayesian Markov chain Monte Carlo estimation. The parameter estimates obtained for both models were consistent with previous studies. Most importantly, model selection found that the SIR model was substantially better than the vector–host model for the DHF data from Thailand. Therefore, explicitly incorporating the mosquito population may not be necessary in modeling dengue transmission for some populations.
Similar articles
-
Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas.PLoS One. 2015 May 11;10(5):e0125049. doi: 10.1371/journal.pone.0125049. eCollection 2015. PLoS One. 2015. PMID: 25961289 Free PMC article.
-
An SIR-Dengue transmission model with seasonal effects and impulsive control.Math Biosci. 2017 Jul;289:29-39. doi: 10.1016/j.mbs.2017.04.005. Epub 2017 Apr 20. Math Biosci. 2017. PMID: 28434995
-
Relationship between transmission intensity and incidence of dengue hemorrhagic fever in Thailand.PLoS Negl Trop Dis. 2008 Jul 16;2(7):e263. doi: 10.1371/journal.pntd.0000263. PLoS Negl Trop Dis. 2008. PMID: 18628986 Free PMC article.
-
Global spread and persistence of dengue.Annu Rev Microbiol. 2008;62:71-92. doi: 10.1146/annurev.micro.62.081307.163005. Annu Rev Microbiol. 2008. PMID: 18429680 Review.
-
Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.Int J Infect Dis. 2014 Feb;19:6-12. doi: 10.1016/j.ijid.2013.10.012. Epub 2013 Dec 11. Int J Infect Dis. 2014. PMID: 24334026 Review.
Cited by
-
Modeling Zika Virus Transmission Dynamics: Parameter Estimates, Disease Characteristics, and Prevention.Sci Rep. 2019 Jul 22;9(1):10575. doi: 10.1038/s41598-019-46218-4. Sci Rep. 2019. PMID: 31332269 Free PMC article.
-
Using paired serology and surveillance data to quantify dengue transmission and control during a large outbreak in Fiji.Elife. 2018 Aug 14;7:e34848. doi: 10.7554/eLife.34848. Elife. 2018. PMID: 30103854 Free PMC article.
-
Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics.Sci Transl Med. 2023 Nov 15;15(722):eadi1734. doi: 10.1126/scitranslmed.adi1734. Epub 2023 Nov 15. Sci Transl Med. 2023. PMID: 37967199 Free PMC article.
-
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina.Infect Dis Model. 2022 Oct 27;7(4):823-834. doi: 10.1016/j.idm.2022.10.004. eCollection 2022 Dec. Infect Dis Model. 2022. PMID: 36474869 Free PMC article.
-
Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes.BMC Infect Dis. 2024 Sep 9;24(1):944. doi: 10.1186/s12879-024-09878-w. BMC Infect Dis. 2024. PMID: 39251932 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
