Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle
- PMID: 24438338
- PMCID: PMC5414928
- DOI: 10.1210/me.2013-1179
Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle
Erratum in
-
Corrigendum.Mol Endocrinol. 2016 Feb;30(2):272-3. doi: 10.1210/me.2015-1321. Epub 2016 Jan 18. Mol Endocrinol. 2016. PMID: 26780302 Free PMC article. No abstract available.
Abstract
Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.
Figures
Similar articles
-
Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts.Cell Res. 2011 Nov;21(11):1591-604. doi: 10.1038/cr.2011.72. Epub 2011 Apr 19. Cell Res. 2011. PMID: 21502976 Free PMC article.
-
Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.Mol Endocrinol. 2013 Nov;27(11):1946-57. doi: 10.1210/me.2013-1194. Epub 2013 Sep 3. Mol Endocrinol. 2013. PMID: 24002653 Free PMC article.
-
Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting.Mol Endocrinol. 2011 Nov;25(11):1936-49. doi: 10.1210/me.2011-1124. Epub 2011 Sep 29. Mol Endocrinol. 2011. PMID: 21964591 Free PMC article. Retracted.
-
PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.Curr Top Microbiol Immunol. 2010;346:267-78. doi: 10.1007/82_2010_78. Curr Top Microbiol Immunol. 2010. PMID: 20593312 Review.
-
Skeletal muscle hypertrophy and atrophy signaling pathways.Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84. doi: 10.1016/j.biocel.2005.04.018. Int J Biochem Cell Biol. 2005. PMID: 16087388 Review.
Cited by
-
Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease.Adv Exp Med Biol. 2023;1408:201-218. doi: 10.1007/978-3-031-26163-3_11. Adv Exp Med Biol. 2023. PMID: 37093429
-
Inflammation: Roles in Skeletal Muscle Atrophy.Antioxidants (Basel). 2022 Aug 29;11(9):1686. doi: 10.3390/antiox11091686. Antioxidants (Basel). 2022. PMID: 36139760 Free PMC article. Review.
-
Myostatin Deficiency Enhances Antioxidant Capacity of Bovine Muscle via the SMAD-AMPK-G6PD Pathway.Oxid Med Cell Longev. 2022 May 25;2022:3497644. doi: 10.1155/2022/3497644. eCollection 2022. Oxid Med Cell Longev. 2022. PMID: 35663205 Free PMC article.
-
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease.Antioxidants (Basel). 2022 Apr 11;11(4):755. doi: 10.3390/antiox11040755. Antioxidants (Basel). 2022. PMID: 35453440 Free PMC article. Review.
-
Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle.Front Cell Dev Biol. 2022 Feb 21;10:826981. doi: 10.3389/fcell.2022.826981. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35265618 Free PMC article. Review.
References
-
- Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003;425:577–584. - PubMed
-
- Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. - PubMed
-
- Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-β and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol. 2005;175:5390–5395. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
