Characteristics of electrically injured skin from human hand tissue samples using Fourier transform infrared microspectroscopy

Sci Justice. 2014 Jan;54(1):98-104. doi: 10.1016/j.scijus.2013.07.005. Epub 2013 Aug 9.

Abstract

This technical note describes a method for distinguishing normal skin tissue samples from those electrically injured by Fourier transform infrared microspectroscopy (FTIR MSP). Furthermore, the infrared spectral features of electrically injured cells and tissues were evaluated to identify molecular changes in epidermal cells. In the present study, 20 human hand tissue samples were evaluated macroscopically and histopathologically. The electrically injured skin samples were subdivided into 2 regions [normal cell regions (NCRs) and polarized cell regions (PCRs)] and 14 major spectral absorption bands were selected. The spectral results showed that the band absorbance at 1080, 1126, 1172, 1242, 1307, 1403, 1456, 1541, 2852, 2925, 2957, 3075, and 3300cm(-1) increased significantly both in the stratum and non-stratum corneum of the PCRs in electrically injured skin tissues samples. No significant difference was found between normal skin and the NCR of the electrically injured skin samples. The band absorbance ratios of A1172/A1126, A1456/A1403, and A2925/A2957 were significantly increased, whereas the A1652/A1541 ratio was decreased in the PCR of the stratum corneum and non-stratum corneum. Baseline changes from 4000 to near 1737cm(-1) were observed in the spectra of the electrically injured skin samples, which were interpreted in terms of the pathological process involved in electrical injury. FTIR-MSP presents a useful method to provide objective spectral markers for the assisted diagnosis of electrical marks.

Keywords: Cell polarization; Electric injury; Fourier transform infrared microspectroscopy; Human skin tissue.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electric Injuries / pathology*
  • Female
  • Hand Injuries / pathology
  • Humans
  • Male
  • Middle Aged
  • Skin / injuries*
  • Skin / pathology*
  • Spectroscopy, Fourier Transform Infrared*
  • Young Adult