Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis
- PMID: 24440399
- PMCID: PMC3919155
- DOI: 10.1016/j.cub.2013.12.049
Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis
Abstract
Condensin-an SMC-kleisin complex-is essential for efficient segregation of sister chromatids in eukaryotes [1-4]. In Escherichia coli and Bacillus subtilis, deletion of condensin subunits results in severe growth phenotypes and the accumulation of cells lacking nucleoids [5, 6]. In many other bacteria and under slow growth conditions, however, the reported phenotypes are much milder or virtually absent [7-10]. This raises the question of what role prokaryotic condensin might play during chromosome segregation under various growth conditions. In B. subtilis and Streptococcus pneumoniae, condensin complexes are enriched on the circular chromosome near the single origin of replication by ParB proteins bound to parS sequences [11, 12]. Using conditional alleles of condensin in B. subtilis, we demonstrate that depletion of its activity results in an immediate and severe defect in the partitioning of replication origins. Multiple copies of the chromosome remain unsegregated at or near the origin of replication. Surprisingly, the growth and chromosome segregation defects in rich medium are suppressed by a reduction of replication fork velocity but not by partial inhibition of translation or transcription. Prokaryotic condensin likely prevents the formation of sister DNA interconnections at the replication fork or promotes their resolution behind the fork.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Figures
Comment in
-
Chromosome organization: original condensins.Curr Biol. 2014 Feb 3;24(3):R111-3. doi: 10.1016/j.cub.2013.12.033. Curr Biol. 2014. PMID: 24502782
Similar articles
-
The SMC condensin complex is required for origin segregation in Bacillus subtilis.Curr Biol. 2014 Feb 3;24(3):287-92. doi: 10.1016/j.cub.2013.11.050. Epub 2014 Jan 16. Curr Biol. 2014. PMID: 24440393 Free PMC article.
-
Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis.Cell. 2009 May 15;137(4):685-96. doi: 10.1016/j.cell.2009.02.035. Cell. 2009. PMID: 19450516
-
Chromosome organization: original condensins.Curr Biol. 2014 Feb 3;24(3):R111-3. doi: 10.1016/j.cub.2013.12.033. Curr Biol. 2014. PMID: 24502782
-
Deciphering condensin action during chromosome segregation.Trends Cell Biol. 2011 Sep;21(9):552-9. doi: 10.1016/j.tcb.2011.06.003. Epub 2011 Jul 15. Trends Cell Biol. 2011. PMID: 21763138 Review.
-
Condensin in Chromatid Cohesion and Segregation.Cytogenet Genome Res. 2015;147(4):212-6. doi: 10.1159/000444868. Epub 2016 Mar 22. Cytogenet Genome Res. 2015. PMID: 26998746 Review.
Cited by
-
Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by monomeric Soj/ParA during growth and sporulation.Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2204042119. doi: 10.1073/pnas.2204042119. Epub 2022 Oct 7. Proc Natl Acad Sci U S A. 2022. PMID: 36206370 Free PMC article.
-
Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation.Nat Commun. 2024 May 30;15(1):4618. doi: 10.1038/s41467-024-49039-w. Nat Commun. 2024. PMID: 38816445 Free PMC article.
-
Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA.Cell Rep. 2016 Mar 1;14(8):2003-16. doi: 10.1016/j.celrep.2016.01.066. Epub 2016 Feb 18. Cell Rep. 2016. PMID: 26904953 Free PMC article.
-
Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology.J Bacteriol. 2023 May 25;205(5):e0010223. doi: 10.1128/jb.00102-23. Epub 2023 May 4. J Bacteriol. 2023. PMID: 37140386 Free PMC article. Review.
-
SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis.Elife. 2015 May 7;4:e06659. doi: 10.7554/eLife.06659. Elife. 2015. PMID: 25951515 Free PMC article.
References
-
- Hirano T., Mitchison T.J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell. 1994;79:449–458. - PubMed
-
- Gerlich D., Hirota T., Koch B., Peters J.M., Ellenberg J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 2006;16:333–344. - PubMed
-
- D’Ambrosio C., Kelly G., Shirahige K., Uhlmann F. Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr. Biol. 2008;18:1084–1089. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
