Bioremediation of Cd by microbially induced calcite precipitation

Appl Biochem Biotechnol. 2014 Mar;172(6):2907-15. doi: 10.1007/s12010-014-0737-1. Epub 2014 Jan 24.

Abstract

Contamination by Cd is a significant environmental problem. Therefore, we examined Cd removal from an environmental perspective. Ureolysis-driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 55 calcite-forming bacterial strains were newly isolated from various environments. Biomineralization of Cd by calcite-forming bacteria was investigated in laboratory-scale experiments. A simple method was developed to determine the effectiveness of microbially induced calcite precipitation (MICP). Using this method, we determined the effectiveness of biomineralization for retarding the flow of crystal violet through a 25-mL column. When the selected bacteria were analyzed using an inductively coupled plasma optical emission spectrometer, high removal rates (99.95%) of Cd were observed following incubation for 48 h. Samples of solids that formed in the reaction vessels were examined using a scanning electron microscope. The CdCO3 compounds primarily showed a spherical shape. The results of this study demonstrate that MICP-based sequestration of soluble heavy metals via coprecipitation with calcite may be useful for toxic heavy metal bioremediation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillaceae / chemistry
  • Bacillaceae / enzymology*
  • Bacterial Proteins / metabolism*
  • Biodegradation, Environmental
  • Cadmium / chemistry*
  • Cadmium / metabolism
  • Calcium Carbonate / chemistry
  • Carbonates / chemistry*
  • Rheology
  • Soil / chemistry
  • Soil Microbiology*
  • Soil Pollutants / chemistry*
  • Soil Pollutants / metabolism
  • Urease / metabolism*

Substances

  • Bacterial Proteins
  • Carbonates
  • Soil
  • Soil Pollutants
  • Cadmium
  • cadmium carbonate
  • Urease
  • Calcium Carbonate