Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides

J Physiol. 1987 May;386:1-17. doi: 10.1113/jphysiol.1987.sp016518.

Abstract

1. The effect of intracellular application of the hydrolysis-resistant GTP and GDP analogues, guanosine 5'-O-3-thiotriphosphate (GTP-gamma-S), and guanosine 5'-O-2-thiodiphosphate (GDP-beta-S) has been examined on voltage-activated calcium-channel currents and the ability of the gamma-aminobutyric acid B agonist baclofen to inhibit them, in cultured rat dorsal root ganglion (d.r.g.) neurones. 2. Under control conditions, the calcium-channel current, recorded using the whole-cell patch technique with Ba2+ rather than Ca2+ as the permeant divalent cation, consists of an inactivating and a sustained current. In the presence of 500 microM-GTP-gamma-S included in the patch pipette, the calcium-channel current was activated more slowly and was largely non-inactivating during the 100 ms depolarization voltage step. The effects of GTP-gamma-S were abolished by pre-treatment of cells with pertussis toxin. 3. The calcium-channel current recorded in the presence of 500 microM-GDP-beta-S had a more marked transient component than the control calcium-channel current. The proportion of transient calcium-channel current in the presence of GDP-beta-S was not reduced in Na+-free medium. 4. No statistically significant effects of GTP-gamma-S and GDP-beta-S were observed on the calcium-activated potassium current IK(Ca), the transient outward potassium current activated in Ca2+-free medium, or on the inwardly rectifying current (Ih) activated by hyperpolarization. 5. GTP-gamma-S increased the ability of baclofen to inhibit calcium-channel currents, whereas this was decreased by GDP-beta-S and by pre-treatment of cells with pertussis toxin. The half-maximal effective dose (EC50) for baclofen was 2 microM in the presence of GTP-gamma-S, 15 microM for control and 50 microM in the presence of GDP-beta-S. Comparable results were obtained using a single concentration of the adenosine agonist 2-chloroadenosine (2-CA, 0.05 microM) to inhibit calcium-channel currents; its effect was significantly increased by GTP-gamma-S and reduced by GDP-beta-S. 6. The ability of baclofen to inhibit calcium-channel currents was not affected by 1 microM-forskolin or 50 microM-intracellular cyclic AMP. 7. It is concluded that calcium channels in d.r.g.s are associated with a nucleotide binding protein, and that this mediates the effect of baclofen and 2-CA on calcium-channel currents. The ability of GTP-gamma-S to inhibit the transient component of calcium-channel currents in the absence of agonist may represent a means of differentially regulating calcium-channel activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Baclofen / pharmacology*
  • Calcium / physiology*
  • Cells, Cultured
  • Depression, Chemical
  • Dose-Response Relationship, Drug
  • Ganglia, Spinal / physiology*
  • Guanine Nucleotides / pharmacology*
  • Ion Channels / drug effects*
  • Neurons, Afferent / physiology*
  • Pertussis Toxin
  • Rats
  • Time Factors
  • Virulence Factors, Bordetella / pharmacology

Substances

  • Guanine Nucleotides
  • Ion Channels
  • Virulence Factors, Bordetella
  • Pertussis Toxin
  • Baclofen
  • Calcium