Short-term heat acclimation is effective and may be enhanced rather than impaired by dehydration

Am J Hum Biol. 2014 May-Jun;26(3):311-20. doi: 10.1002/ajhb.22509. Epub 2014 Jan 28.

Abstract

Most heat acclimation data are from regimes longer than 1 week, and acclimation advice is to prevent dehydration.

Objectives: We hypothesized that (i) short-term (5-day) heat acclimation would substantially improve physiological strain and exercise tolerance under heat stress, and (ii) dehydration would provide a thermally independent stimulus for adaptation.

Methods: Nine aerobically fit males heat acclimated using controlled-hyperthermia (rectal temperature 38.5°C) for 90 min on 5 days; once euhydrated (EUH) and once dehydrated (DEH) during acclimation bouts. Exercising heat stress tests (HSTs) were completed before and after acclimations (90-min cycling in Ta 35°C, 60% RH).

Results: During acclimation bouts, [aldosterone]plasma rose more across DEH than EUH (95%CI for difference between regimes: 40-411 pg ml(-1); P = 0.03; n = 5) and was positively related to plasma volume expansion (r = 0.65; P = 0.05), which tended to be larger in DEH (CI: -1 to 10%; P = 0.06; n = 9). In HSTs, resting forearm perfusion increased more in DEH (by 5.9 ml 100 tissue ml(-1) min(-1): -11.5 to -1.0; P = 0.04) and end-exercise cardiac frequency fell to a greater extent (by 11 b min(-1): -1 to 22; P = 0.05). Hydration-related effects on other endocrine, cardiovascular, and psychophysical responses to HSTs were unclear. Rectal temperature was unchanged at rest but was 0.3°C lower at end exercise (P < 0.01; interaction: P = 0.52).

Conclusions: Short-term (5-day) heat acclimation induced effective adaptations, some of which were more pronounced after fluid-regulatory strain from permissive dehydration, and not attributable to dehydration effects on body temperature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization*
  • Adult
  • Cross-Over Studies
  • Desiccation
  • Exercise Test
  • Heat-Shock Response*
  • Hot Temperature
  • Humans
  • Male
  • Time Factors
  • Young Adult