1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid : In-vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles

Planta. 1973 Dec;109(4):337-52. doi: 10.1007/BF00387102.


Auxin transport in corn coleoptile sections was inhibited by 2,3,5-triiodobenzoic acid (TIBA) as well as by 1-N-naphthylphthalamic acid (NPA); this inhibition was effected within 1 min of application.A particulate cell fraction-presumably plasma-membrane vesicles-specifically binds NPA and properties of these binding sites were studied using (3)H-NPA and a pelletting technique. The saturation kinetics of the physiological NPA effect, i.e. the inhibition of auxin transport, is similar to that of the specific in-vitro NPA binding. Half saturation of the inhibitory effect was found with about 5×10(-7) M TIBA and with 10(-7) M NPA. Both substances also decreased the speed of movement of auxin pulses within coleoptile sections.NPA dissociates from its binding site when the particulate cell material is centrifuged through an NPA-free cushion. The NPA that is washed from its binding site can be used in another binding test without any apparent change and is chromatographically unaltered. Therefore, the NPA binding is probably reversible and non-covalent. Inhibition of auxin transport by TIBA or NPA could also be reversed when the coleoptile sections were washed in buffer.The movement of (131)I-TIBA in corn coleoptiles appears to be polar in a basipetal direction. Higher concentrations of indoleacetic acid or TIBA inhibited this polar movement, suggesting that TIBA moves in the same channels as auxin. With (3)H-NPA, however, no polar transport could be detected. Together with the in-vitro binding results, these data indicate that TIBA acts directly at the auxin receptor while NPA has a different receptor site.The effect of TIBA and NPA on elongation, with or without auxin, is neglegible in comparison to their effects on auxin transport.