Is there 'anther-anther interference' within a flower? Evidences from one-by-one stamen movement in an insect-pollinated plant

PLoS One. 2014 Jan 27;9(1):e86581. doi: 10.1371/journal.pone.0086581. eCollection 2014.

Abstract

The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen's anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3-1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these 'hungry' insects are discouraged by the scant and non-fresh pollen in the dehisced anther. Furthermore, the dehisced anther blocks the dehiscing anther's access to floral visitors, resulting in a nearly one third decrease in their contact frequency. As a result, pollen removal of the dehiscing anther decreases dramatically. These results provide the first direct experimental evidence that anther-anther interference is possible in a flower, and that the selection to reduce such interferences can be a strong force in floral evolution. We also propose that some other floral traits, usually interpreted as pollen dispensing mechanisms, may function, at least partially, as mechanisms to promote pollen dispersal by reducing interferences between dehisced and dehiscing anthers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Biological / physiology*
  • Analysis of Variance
  • Biological Evolution*
  • Flowers / anatomy & histology*
  • Flowers / growth & development*
  • Magnoliopsida*
  • Plant Dispersal / physiology*
  • Pollination / physiology*
  • Selection, Genetic
  • Species Specificity

Grants and funding

Financial support was provided by the National Natural Science Foundation of China to M.X.R. (grant numbers 30970459 and 31170356) and Z.J.B. (grant numbers 40971036 and 41371103) (www.nsfc.gov.cn). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.