The developing brain is vulnerable to environmental factors. We investigated the effects of air that contained 0.05, 0.1 and 0.3% CO2 on the hippocampus, prefrontal cortex (PFC) and amygdala. We focused on the circuitry involved in the neurobiology of anxiety, spatial learning, memory, and on insulin-like growth factor-1 (IGF-1), which is known to play a role in early brain development in rats. Spatial learning and memory were impaired by exposure to 0.3% CO2 air, while exposure to 0.1 and 0.3% CO2 air elevated blood corticosterone levels, intensified anxiety behavior, increased superoxide dismutase (SOD) enzyme activity and MDA levels in hippocampus and PFC; glutathione peroxidase (GPx) enzyme activity decreased in the PFC with no associated change in the hippocampus. IGF-1 levels were decreased in the blood, PFC and hippocampus by exposure to both 0.1 and 0.3% CO2. In addition, apoptosis was increased, while cell numbers were decreased in the CA1 regions of hippocampus and PFC after 0.3% CO2 air exposure in adolescent rats. A positive correlation was found between the blood IGF-1 level and apoptosis in the PFC. We found that chronic exposure to 0.3% CO2 air decreased IGF-1 levels in the serum, hippocampus and PFC, and increased oxidative stress. These findings were associated with increased anxiety behavior, and impaired memory and learning.
Keywords: IGF-1; air quality; amygdala; carbon dioxide; hippocampus; insulin-like growth factor-1; learning; memory; prefrontal cortex.