We describe a gold nanoparticle-based technique for the detection of single-base mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene, a condition that can lead to neonatal jaundice and hemolytic anemia. The aim of this technique is to clearly distinguish different mutations frequently described within the Asian population from their wild-type counterparts and across different mutant variants. Gold nanoparticles of different sizes were synthesized, and each was conjugated with a single-strand DNA (ssDNA) sequence specific for a particular mutation in the G6PD gene. It was found that only mutant targets presented a characteristic band on the agarose gel, indicating the successful formation of dimeric nanostructures. No such dimer bands were observed for the wild-type targets. The difference in the relative dimer band levels allowed different mutant variants to be distinguished from one another. The technique was further validated using G6PD-deficient patient samples. This simple mutation detection method with direct result readout is amenable for rapid and mass screening of samples.
Keywords: Gel electrophoresis; Glucose-6-phosphate dehydrogenase (G6PD) deficiency; Gold nanoparticles; Multiplex detection; Mutation screening.
Copyright © 2014 Elsevier Inc. All rights reserved.