Bacterial growth: global effects on gene expression, growth feedback and proteome partition
- PMID: 24495512
- PMCID: PMC4111964
- DOI: 10.1016/j.copbio.2014.01.001
Bacterial growth: global effects on gene expression, growth feedback and proteome partition
Abstract
The function of endogenous as well as synthetic genetic circuits is generically coupled to the physiological state of the cell. For exponentially growing bacteria, a key characteristic of the state of the cell is the growth rate and thus gene expression is often growth-rate dependent. Here we review recent results on growth-rate dependent gene expression. We distinguish different types of growth-rate dependencies by the mechanisms of regulation involved and the presence or absence of an effect of the gene product on growth. The latter can lead to growth feedback, feedback mediated by changes of the global state of the cell. Moreover, we discuss how growth rate dependence can be used as a guide to study the molecular implementation of physiological regulation.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Figures
Similar articles
-
Growth rate-dependent global effects on gene expression in bacteria.Cell. 2009 Dec 24;139(7):1366-75. doi: 10.1016/j.cell.2009.12.001. Cell. 2009. PMID: 20064380 Free PMC article.
-
Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria.Mol Syst Biol. 2015 Feb 12;11(1):784. doi: 10.15252/msb.20145697. Mol Syst Biol. 2015. PMID: 25678603 Free PMC article.
-
Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome.Bioessays. 2010 Jun;32(6):461-7. doi: 10.1002/bies.201000020. Bioessays. 2010. PMID: 20486131 Review.
-
Fitness and proteome changes accompanying the development of erythromycin resistance in a population of Escherichia coli grown in continuous culture.Microbiologyopen. 2013 Oct;2(5):841-52. doi: 10.1002/mbo3.121. Epub 2013 Aug 28. Microbiologyopen. 2013. PMID: 23996919 Free PMC article.
-
Metabolic regulation of antibiotic resistance.FEMS Microbiol Rev. 2011 Sep;35(5):768-89. doi: 10.1111/j.1574-6976.2011.00282.x. Epub 2011 Jun 28. FEMS Microbiol Rev. 2011. PMID: 21645016 Review.
Cited by
-
Quantifying Dynamic Phenotypic Heterogeneity in Resistant Escherichia coli under Translation-Inhibiting Antibiotics.Adv Sci (Weinh). 2024 Mar;11(11):e2304548. doi: 10.1002/advs.202304548. Epub 2024 Jan 9. Adv Sci (Weinh). 2024. PMID: 38193201 Free PMC article.
-
Enhancing circuit stability under growth feedback with supplementary repressive regulation.Nucleic Acids Res. 2024 Feb 9;52(3):1512-1521. doi: 10.1093/nar/gkad1233. Nucleic Acids Res. 2024. PMID: 38164993 Free PMC article.
-
Systems Biology Approaches to Understanding COVID-19 Spread in the Population.Methods Mol Biol. 2024;2745:233-253. doi: 10.1007/978-1-0716-3577-3_15. Methods Mol Biol. 2024. PMID: 38060190
-
Canalisation and plasticity on the developmental manifold of Caenorhabditis elegans.Mol Syst Biol. 2023 Nov 9;19(11):e11835. doi: 10.15252/msb.202311835. Epub 2023 Oct 18. Mol Syst Biol. 2023. PMID: 37850520 Free PMC article.
-
Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production.Adv Sci (Weinh). 2023 Nov;10(31):e2302417. doi: 10.1002/advs.202302417. Epub 2023 Sep 25. Adv Sci (Weinh). 2023. PMID: 37749873 Free PMC article.
References
-
- Monod J. The Growth of Bacterial Cultures. Annual Review of Microbiology. 1949;3 :371–394.
-
- Monod J. From enzymatic adaptation to allosteric transitions. Science. 1966;154:475–483. - PubMed
-
- Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell: a molecular approach. Sinauer; 1990.
-
- Schaechter M. From growth physiology to systems biology. Int Microbiol. 2006;9:157–161. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
