Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 Feb 5;4(2):e003505.
doi: 10.1136/bmjopen-2013-003505.

Effect of a 6-month Vegan Low-Carbohydrate ('Eco-Atkins') Diet on Cardiovascular Risk Factors and Body Weight in Hyperlipidaemic Adults: A Randomised Controlled Trial

Affiliations
Free PMC article
Randomized Controlled Trial

Effect of a 6-month Vegan Low-Carbohydrate ('Eco-Atkins') Diet on Cardiovascular Risk Factors and Body Weight in Hyperlipidaemic Adults: A Randomised Controlled Trial

David J A Jenkins et al. BMJ Open. .
Free PMC article

Abstract

Objective: Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C).

Design, setting, participants: A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006.

Intervention: Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively.

Primary outcome: Change in body weight.

Results: 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to -6.9 kg on low-carbohydrate and -5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) -1.1 kg (-2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) -0.49 mmol/L (-0.70 to -0.28), p<0.001 and -0.34 mmol/L (-0.57 to -0.11), p=0.005, respectively), as were the total cholesterol:HDL-C and apolipoprotein B:A1 ratios (-0.57 (-0.83, -0.32), p<0.001 and -0.05 (-0.09, -0.02), p=0.003, respectively).

Conclusions: A self-selected low-carbohydrate vegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors.

Trial registration: clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516.

Keywords: Diet; Hyperlipidemia; Weight Loss.

Figures

Figure 1
Figure 1
Patient flow diagram. *Chose not to participate (29): busy lifestyle (13); not interested (6); study too demanding (3); currently on another diet (2); no compensation (2); work-related (2); dislike prepackaged foods (1). **Other reasons (44): unable to contact (19); unable to come to clinic (13); away (5); throat surgery (1); bowel resection (1); high potassium and BP (1); high potassium (1); raised liver function tests (1); not interested (1); medical insurance issue (1).
Figure 2
Figure 2
Weight loss during the study on both diets. Weight loss during the study on both diets. Values represent mean±SEM of the change from baseline during the metabolic and ad libitum phases, using multiple imputation (taking the mean of 5 sets of randomly imputed values) to generate data for those who dropped out or had missing values on the ad libitum phase. The change in weight during the ad libitum phase was significantly reduced (P=0.047) on the low versus the high carbohydrate diet using all available data in the repeated measures mixed model analysis. Cross hatched bar represents the metabolic phase.
Figure 3
Figure 3
Change in (A) LDL-C, (B) HDL-C, (C) TC:HDL-C, (D) Apolipoprotein B (apoB), (E) Apolipoprotein A1 (apoA1), (F) ApoB:ApoA1 ratio between the two treatments during the metabolic and ad libitum phases. Values represent mean ±SEM of the change from baseline using multiple imputation (taking the mean of 5 sets of randomly imputed values) to generate data for those who dropped out or had missing values for the ad libitum phase. Significant treatment differences were seen for LDL-C (p<0.001), apo B (p<0.001) and the ratios TC:HDL-C (p<0.001) and apoB:apoA1 (p=0.003). using all available data in the repeated measures mixed model analysis during the ad libitum phase. Cross hatched bar represents the metabolic phase.

Similar articles

See all similar articles

Cited by 16 articles

See all "Cited by" articles

References

    1. Samaha FF, Iqbal N, Seshadri P, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003;348:2074–81 - PubMed
    1. Foster GD, Wyatt HR, Hill JO, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003;348:2082–90 - PubMed
    1. Stern L, Iqbal N, Seshadri P, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 2004;140:778–85 - PubMed
    1. Dansinger ML, Gleason JA, Griffith JL, et al. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 2005;293:43–53 - PubMed
    1. Gardner CD, Kiazand A, Alhassan S, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A to Z Weight Loss Study: a randomized trial. JAMA 2007;297:969–77 - PubMed

Publication types

Associated data

Feedback