Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO₂

PLoS One. 2014 Feb 5;9(2):e87678. doi: 10.1371/journal.pone.0087678. eCollection 2014.

Abstract

Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO₂ that exceed OA projections for the near future. To understand the influence of dynamic pCO₂ on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO₂. Individuals were exposed to ambient (400 µatm), high (660 µatm), or variable pCO₂ (oscillating between 400/660 µatm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO₂ variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO₂ decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO₂ indicates that individuals existing in dynamic pCO₂ habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO₂ variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acclimatization / physiology*
  • Animals
  • Anthozoa*
  • Carbon Dioxide / metabolism*
  • Ecosystem*
  • Oceans and Seas
  • Rhodophyta / physiology*

Substances

  • Carbon Dioxide

Grants and funding

Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.