Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 15;16(20):1199-203.
doi: 10.3923/pjbs.2013.1199.1203.

Dissolution properties of silk cocoon shells and degummed fibers from African wild silkmoths

Affiliations

Dissolution properties of silk cocoon shells and degummed fibers from African wild silkmoths

K T Addis et al. Pak J Biol Sci. .

Abstract

Silk cocoon shells and degummed fibers from four African wild silkmoth species were studied and compared with the industrial standard, Bombyx mori, for their dissolution properties. Nine M aqueous Lithium bromide, Calcium chloride and Sodium thiocyanate solution systems were used. Efficiency of the solvent systems was determined by the percentage of dissolved silk cocoon shells and degummed fibers after three hours of treatment. Degummed fibers were more readily soluble than the cocoon shells. B. mori cocoon shells (51.5%) and fibers (59.3%) had higher solubility than their wild counterparts. Among the wild species, Gonometa postica cocoon shells and degummed fibers had the highest solubility (37.3 and 51.7%, respectively). Lithium bromide was the most effective dissolving agent for both the cocoon shells and fibers (41.2 and 84.5%, respectively). Argema mimosae, Anaphe panda and Epiphora bauhiniae showed lower solubility across the solution systems used. The Scanning Electron micrographs showed A. panda fibers exhibited gelling property after dissolution while E. bauhiniae and A. mimosae had cracked and broken fibers exposing the fibriliar structures. The difference in the chemical orientation and composition of the fibers might have contributed to the variability in the dissolution behaviour.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources