Mechanical control of the endothelial barrier

Cell Tissue Res. 2014 Mar;355(3):545-55. doi: 10.1007/s00441-013-1792-6. Epub 2014 Feb 12.

Abstract

The integrity of the endothelial barrier is controlled by the combined action of chemical and mechanical signaling systems. Permeability-regulating factors signal through small GTPases to regulate the architecture of the cytoskeleton and this has a strong impact on the morphology and stability of VE-cadherin-based cell-cell junctions. The details of how structural and mechanical properties of the actin cytoskeleton influence cell-cell adhesion and how this impacts the dynamic regulation of the endothelial barrier, are beginning to be elucidated. In this review, we discuss the physical and regulatory interactions between the VE-cadherin complex and the actomysoin cytoskeleton, as they are the main determinants of cell-cell adhesion and the mechanical architecture of the cytoskeleton. We discuss, based on recent in vitro data, how a balance between Linear Adherens Junctions, paralleled by cortical actin bundles and Focal Adherens Junctions, connected to radial action bundles, determines endothelial barrier function. We discuss how small GTPases control this balance by regulating the spatial organization and mechanics of actomyosin. We propose a hypothetical model of how biochemical and mechanical signals cooperate locally, at the actomyosin-adhesion interface to open and re-seal the barrier in a rapid and controlled manner.

Publication types

  • Review

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actomyosin / metabolism
  • Animals
  • Antigens, CD / metabolism
  • Cadherins / metabolism
  • Cell Adhesion / physiology
  • Endothelial Cells / cytology
  • Endothelial Cells / metabolism
  • Endothelial Cells / physiology*
  • Endothelium / metabolism
  • Endothelium / physiology*
  • Humans
  • Signal Transduction

Substances

  • Antigens, CD
  • Cadherins
  • cadherin 5
  • Actomyosin