Effects of suburbanization on forest bee communities

Environ Entomol. 2014 Apr;43(2):253-62. doi: 10.1603/EN13078. Epub 2014 Feb 17.

Abstract

Urbanization is a dominant form of land-use change driving species distributions, abundances, and diversity. Previous research has documented the negative impacts of urbanization on the abundance and diversity of many groups of organisms. However, some organisms, such as bees, may benefit from moderate levels of development, depending on how development alters the availability of foraging and nesting resources. To determine how one type of low-intensity human development, suburbanization, affects bee abundance and diversity and the mechanisms involved, we surveyed bees across suburban and natural forests in the Raleigh-Durham area of North Carolina. We sampled for bees using a combination of bee bowls and hand-netting from March through July of 2008 and 2009. We found higher bee abundance in suburban than natural forests, and although observed species richness was greater in suburban than natural forests, there were no significant differences in rarefied richness or evenness estimates in either year. In addition, the effects of suburbanization were similar across bee species of varying ecological and life-history characteristics. At the local scale, bee abundance and species richness were both positively related to the abundance and richness of flowering species within forests, while the proportion of surrounding developed open areas, such as yards and roadsides, was a strong positive predictor of both bee abundance and richness at the landscape scale. These results suggest that open habitats and the availability of floral resources in suburban sites can support abundant and diverse bee communities and underscore the potential for native bee conservation in urban habitats.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bees / physiology*
  • Biodiversity*
  • Flowers / physiology
  • Forests*
  • North Carolina
  • Population Dynamics
  • Regression Analysis
  • Suburban Population*