Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners

Hum Mov Sci. 2014 Apr:34:120-7. doi: 10.1016/j.humov.2014.01.006. Epub 2014 Feb 17.


There is evidence supporting that habitual barefoot runners are able to disperse impact loading rates by landing pattern modification. Yet, case studies suggested that barefoot running may result in severe running injuries, such as metatarsal and calcaneal stress fractures. Injuries may be due to a difference in biomechanical response between habitual and novice barefoot runners. This study investigated the initial effects of barefoot running in habitual shod runners in terms of landing pattern modification and vertical loading rates. Thirty habitual shod runners (mean age 25.5±5.2years; 18 men; with a minimum running mileage of 30km per week for at least one year) ran on an instrumented treadmill at 10km/h shod and barefoot in a randomized order. Vertical average (VALR) and instantaneous loading rates (VILR) were obtained by established methods. Landing pattern was presented as a ratio between the number of footfalls with a heelstrike and the total step number. Twenty participants demonstrated an automatic transition to a non-heelstrike landing during barefoot running, whereas a mixed landing pattern was observed in 10 participants. Compared to shod running, both VALR and VILR were significantly reduced during barefoot running (p<.021). In the subgroup analysis, VALR for the shod condition was significantly higher than barefoot running, regardless of the landing pattern. VALR for the non-heelstrike pattern during barefoot running was significantly lower than participants with a mixed landing pattern. Conversely, we observed two participants who completely altered their landing patterns, presented high VALR and VILR values. Habitual shod runners presented lower loading rates during barefoot running but their landing pattern transitions were not uniform. Novice barefoot runners with a mixed landing pattern may sustain higher loading rates, compared with those who completely avoided heelstrike pattern. However, a complete landing pattern modification may not guarantee lower loading rates.

Keywords: Kinetics; Minimalist; Shoe; Transition.

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Female
  • Foot / physiology*
  • Humans
  • Male
  • Postural Balance / physiology
  • Practice, Psychological
  • Running*
  • Shoes*
  • Weight-Bearing*
  • Young Adult