Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair

Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E924-32. doi: 10.1073/pnas.1400236111. Epub 2014 Feb 20.

Abstract

DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs). HDR at nicks, but not DSBs, is associated with transcription and is eightfold more efficient at a nick on the transcribed strand than at a nick on the nontranscribed strand. HDR at nicks can proceed by a pathway dependent upon canonical HDR factors RAD51 and BRCA2; or by an efficient alternative pathway that uses either ssDNA or nicked dsDNA donors and that is strongly inhibited by RAD51 and BRCA2. Nicks generated by either I-AniI or the CRISPR/Cas9(D10A) nickase are repaired by the alternative HDR pathway with little accompanying mutagenic end-joining, so this pathway may be usefully applied to genome engineering. These results suggest that alternative HDR at nicks may be stimulated in physiological contexts in which canonical RAD51/BRCA2-dependent HDR is compromised or down-regulated, which occurs frequently in tumors.

Keywords: cancer; gene conversion; loss of heterozygosity; recombination; targeted gene correction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • BRCA2 Protein / genetics
  • Cell Line
  • DNA Breaks, Single-Stranded*
  • Flow Cytometry
  • Gene Expression Regulation / physiology
  • Genetic Engineering / methods
  • Humans
  • Models, Genetic*
  • RNA, Small Interfering / genetics
  • Rad51 Recombinase / genetics
  • Recombinational DNA Repair / genetics
  • Recombinational DNA Repair / physiology*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • BRCA2 Protein
  • BRCA2 protein, human
  • RNA, Small Interfering
  • RAD51 protein, human
  • Rad51 Recombinase