Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq
- PMID: 24564186
- PMCID: PMC4007560
- DOI: 10.1186/1471-2164-15-154
Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq
Abstract
Background: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and academic settings represent valuable and often underappreciated resources, and methods for assessing and improving the quality of these data are lacking.
Results: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the same microarray platform.
Conclusions: Microarrays provide consistent, reproducible gene expression measurements, which are improved using RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from major existing repositories.
Figures
Similar articles
-
Seq-ing improved gene expression estimates from microarrays using machine learning.BMC Bioinformatics. 2015 Sep 4;16:286. doi: 10.1186/s12859-015-0712-z. BMC Bioinformatics. 2015. PMID: 26338512 Free PMC article.
-
Correlation between RNA-Seq and microarrays results using TCGA data.Gene. 2017 Sep 10;628:200-204. doi: 10.1016/j.gene.2017.07.056. Epub 2017 Jul 20. Gene. 2017. PMID: 28734892
-
Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling.BMC Bioinformatics. 2017 Nov 21;18(1):506. doi: 10.1186/s12859-017-1925-0. BMC Bioinformatics. 2017. PMID: 29157215 Free PMC article.
-
Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq.Med Sci Monit Basic Res. 2014 Aug 23;20:138-42. doi: 10.12659/MSMBR.892101. Med Sci Monit Basic Res. 2014. PMID: 25149683 Free PMC article. Review.
-
Genes, behavior and next-generation RNA sequencing.Genes Brain Behav. 2013 Feb;12(1):1-12. doi: 10.1111/gbb.12007. Epub 2012 Dec 28. Genes Brain Behav. 2013. PMID: 23194347 Free PMC article. Review.
Cited by
-
A Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum.mBio. 2015 Nov 24;6(6):e01808-15. doi: 10.1128/mBio.01808-15. mBio. 2015. PMID: 26604256 Free PMC article.
-
Microstructural imaging and transcriptomics of the basal forebrain in first-episode psychosis.Transl Psychiatry. 2022 Sep 1;12(1):358. doi: 10.1038/s41398-022-02136-0. Transl Psychiatry. 2022. PMID: 36050318 Free PMC article.
-
A comprehensive transcriptional map of primate brain development.Nature. 2016 Jul 21;535(7612):367-75. doi: 10.1038/nature18637. Epub 2016 Jul 13. Nature. 2016. PMID: 27409810 Free PMC article.
-
Genetic influences on hub connectivity of the human connectome.Nat Commun. 2021 Jul 9;12(1):4237. doi: 10.1038/s41467-021-24306-2. Nat Commun. 2021. PMID: 34244483 Free PMC article.
-
Oxytocin under opioid antagonism leads to supralinear enhancement of social attention.Proc Natl Acad Sci U S A. 2017 May 16;114(20):5247-5252. doi: 10.1073/pnas.1702725114. Epub 2017 May 1. Proc Natl Acad Sci U S A. 2017. PMID: 28461466 Free PMC article.
References
-
- Chen H, Liu Z, Gong S, Wu X, Taylor WL, Williams RW, Matta SG, Sharp BM. Genome-wide gene expression profiling of nucleus accumbens neurons projecting to ventral pallidum using both microarray and transcriptome sequencing. Front Neurosci. 2011;5:98. doi: 10.3389/fnins.2011.00098. - DOI - PMC - PubMed
-
- Raghavachari N, Barb J, Yang Y, Liu P, Woodhouse K, Levy D, O'Donnell CJ, Munson PJ, Kato GJ. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med Genom. 2012;5:28. doi: 10.1186/1755-8794-5-28. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
