The log-dynamic brain: how skewed distributions affect network operations
- PMID: 24569488
- PMCID: PMC4051294
- DOI: 10.1038/nrn3687
The log-dynamic brain: how skewed distributions affect network operations
Abstract
We often assume that the variables of functional and structural brain parameters - such as synaptic weights, the firing rates of individual neurons, the synchronous discharge of neural populations, the number of synaptic contacts between neurons and the size of dendritic boutons - have a bell-shaped distribution. However, at many physiological and anatomical levels in the brain, the distribution of numerous parameters is in fact strongly skewed with a heavy tail, suggesting that skewed (typically lognormal) distributions are fundamental to structural and functional brain organization. This insight not only has implications for how we should collect and analyse data, it may also help us to understand how the different levels of skewed distributions - from synapses to cognition - are related to each other.
Figures
Similar articles
-
Preconfigured architecture of the developing mouse brain.Cell Rep. 2024 Jun 25;43(6):114267. doi: 10.1016/j.celrep.2024.114267. Epub 2024 May 24. Cell Rep. 2024. PMID: 38795344
-
On the distribution of firing rates in networks of cortical neurons.J Neurosci. 2011 Nov 9;31(45):16217-26. doi: 10.1523/JNEUROSCI.1677-11.2011. J Neurosci. 2011. PMID: 22072673 Free PMC article.
-
From the neuron doctrine to neural networks.Nat Rev Neurosci. 2015 Aug;16(8):487-97. doi: 10.1038/nrn3962. Epub 2015 Jul 8. Nat Rev Neurosci. 2015. PMID: 26152865 Review.
-
The heavy tail of the human brain.Curr Opin Neurobiol. 2015 Apr;31:164-72. doi: 10.1016/j.conb.2014.10.014. Epub 2014 Nov 15. Curr Opin Neurobiol. 2015. PMID: 25460073 Review.
-
Sequential configuration model for firing patterns in local neural networks.Biol Cybern. 1991;65(5):339-49. doi: 10.1007/BF00216967. Biol Cybern. 1991. PMID: 1742371
Cited by
-
Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.PLoS Comput Biol. 2015 Apr 24;11(4):e1004227. doi: 10.1371/journal.pcbi.1004227. eCollection 2015 Apr. PLoS Comput Biol. 2015. PMID: 25910189 Free PMC article.
-
Predictable Fluctuations in Excitatory Synaptic Strength Due to Natural Variation in Presynaptic Firing Rate.J Neurosci. 2022 Nov 16;42(46):8608-8620. doi: 10.1523/JNEUROSCI.0808-22.2022. Epub 2022 Sep 28. J Neurosci. 2022. PMID: 36171085 Free PMC article.
-
Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.Front Neurosci. 2016 Sep 14;10:420. doi: 10.3389/fnins.2016.00420. eCollection 2016. Front Neurosci. 2016. PMID: 27683540 Free PMC article.
-
Correlated activity favors synergistic processing in local cortical networks in vitro at synaptically relevant timescales.Netw Neurosci. 2020 Jul 1;4(3):678-697. doi: 10.1162/netn_a_00141. eCollection 2020. Netw Neurosci. 2020. PMID: 32885121 Free PMC article.
-
Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus.J Comput Neurosci. 2024 Nov;52(4):303-321. doi: 10.1007/s10827-024-00881-3. Epub 2024 Sep 17. J Comput Neurosci. 2024. PMID: 39285088 Free PMC article.
References
-
- Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–512. - PubMed
-
- Sporns O. Networks of the Brain. MIT Press; 2010.
-
- Limpert E, Stahel WA, Abbt M. Lognormal distributions across the sciences: keys and clues. Bioscience. 2001;51:341–352.
-
- Weber H. Annotationes Anatomicae et Physiologicae. Koehler; German: 1834. De Pulsa Resorptione Auditu et Tactu.
-
- Fechner GT. Elemente der Psychophysik. Breitkopf und Härtel; German: 1860.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
