Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes

Mol Cell Biochem. 2014 May;390(1-2):235-42. doi: 10.1007/s11010-014-1974-x. Epub 2014 Feb 27.

Abstract

Breast cancer is one of the common tumors occurring in woman and despite treatment, the prognostic is poor. Genistein, a soy isoflavone, has been reported to have chemopreventive\chemotherapeutic potential in multiple tumor types. Here, we investigated the genistein antiproliferative effect in MCF-7 breast cancer, underlying the molecular mechanisms involved in this effect. MCF-7 cancer and CCD1059sK fibroblast cells were treated with estradiol (10 nM) or genistein (0.01-100 μM) for 24, 48, and 72 h and the cell proliferation was investigated by MTT; membrane cell permeability was evaluated by LDH and PI incorporation; apoptosis was investigated by externalization of phosphatidylserine by FACS; and presence of autophagy was detected by LC3A/B immunostaining. The expression of apoptotic proteins and antioxidant enzymes was evaluated by qPCR. The results demonstrate that genistein (100 μM) for 72 h of treatment selectively reduced MCF-7 cell proliferation independent of estrogen receptor activation, while no cytotoxicity was observed in fibroblast cells. Further experiments showed that genistein induced phosphatidylserine externalization and LC3A/B immunopositivity in MCF-7 cells, indicating apoptosis and autophagy cell death. Genistein increased in three times proapoptotic BAX/Bcl-2 ratio and promoted a parallel downregulation of 20 times of antiapoptotic survivin. In addition, genistein promoted a decrease of 5.5, 9.3, and 3.6 times of MnSOD, CuZnSOD, and TrxR mRNA expression, respectively, while the GPx expression was increased by 6.5 times. These results suggest that the antitumor effect of genistein involved the modulation of antioxidant enzyme and apoptotic signaling expression, which resulted in apoptosis and progression of autophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Autophagy / drug effects*
  • Breast Neoplasms / enzymology
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology
  • Cell Proliferation / drug effects
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Genistein / administration & dosage*
  • Humans
  • MCF-7 Cells
  • Oxidative Stress / genetics
  • bcl-2-Associated X Protein / metabolism

Substances

  • bcl-2-Associated X Protein
  • Genistein