Machine learning for neuroimaging with scikit-learn
- PMID: 24600388
- PMCID: PMC3930868
- DOI: 10.3389/fninf.2014.00014
Machine learning for neuroimaging with scikit-learn
Abstract
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Keywords: Python; machine learning; neuroimaging; scikit-learn; statistical learning.
Figures
Similar articles
-
Machine learning patterns for neuroimaging-genetic studies in the cloud.Front Neuroinform. 2014 Apr 8;8:31. doi: 10.3389/fninf.2014.00031. eCollection 2014. Front Neuroinform. 2014. PMID: 24782753 Free PMC article.
-
Introduction to Machine Learning in Neuroimaging.Acta Neurochir Suppl. 2022;134:121-124. doi: 10.1007/978-3-030-85292-4_16. Acta Neurochir Suppl. 2022. PMID: 34862536
-
Analyzing microtomography data with Python and the scikit-image library.Adv Struct Chem Imaging. 2017;2(1):18. doi: 10.1186/s40679-016-0031-0. Epub 2016 Dec 7. Adv Struct Chem Imaging. 2017. PMID: 29142808 Free PMC article.
-
Interpreting mental state decoding with deep learning models.Trends Cogn Sci. 2022 Nov;26(11):972-986. doi: 10.1016/j.tics.2022.07.003. Trends Cogn Sci. 2022. PMID: 36223760 Review.
-
Overview of Machine Learning Part 1: Fundamentals and Classic Approaches.Neuroimaging Clin N Am. 2020 Nov;30(4):e17-e32. doi: 10.1016/j.nic.2020.08.007. Neuroimaging Clin N Am. 2020. PMID: 33039003 Review.
Cited by
-
Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer.Comput Struct Biotechnol J. 2024 Jul 18;23:3020-3029. doi: 10.1016/j.csbj.2024.07.014. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39171252 Free PMC article.
-
The Impact of Antiviral Therapy for Hepatitis C Virus on the Survival of Patients after Hepatocellular Carcinoma Treatment.Intern Med. 2022;61(18):2721-2729. doi: 10.2169/internalmedicine.8456-21. Epub 2022 Sep 15. Intern Med. 2022. PMID: 36104175 Free PMC article.
-
Characterization of Cutaneous Bacterial Microbiota from Superficial Pyoderma Forms in Atopic Dogs.Pathogens. 2020 Aug 6;9(8):638. doi: 10.3390/pathogens9080638. Pathogens. 2020. PMID: 32781634 Free PMC article.
-
Action Observation Network Activity Related to Object-Directed and Socially-Directed Actions in Adolescents.J Neurosci. 2023 Jan 4;43(1):125-141. doi: 10.1523/JNEUROSCI.1602-20.2022. Epub 2022 Nov 8. J Neurosci. 2023. PMID: 36347621 Free PMC article.
-
Rapid microstructural plasticity in the cortical semantic network following a short language learning session.PLoS Biol. 2021 Jun 14;19(6):e3001290. doi: 10.1371/journal.pbio.3001290. eCollection 2021 Jun. PLoS Biol. 2021. PMID: 34125828 Free PMC article.
References
-
- Detre G., Polyn S., Moore C., Natu V., Singer B., Cohen J., et al. (2006). The multi-voxel pattern analysis (mvpa) toolbox, in Poster Presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy: ). Available online at: http://www.csbmb.princeton.edu/mvpa
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
