Hydrocarbon-stapled peptides: principles, practice, and progress
- PMID: 24601557
- PMCID: PMC4136684
- DOI: 10.1021/jm4011675
Hydrocarbon-stapled peptides: principles, practice, and progress
Abstract
Protein structure underlies essential biological processes and provides a blueprint for molecular mimicry that drives drug discovery. Although small molecules represent the lion's share of agents that target proteins for therapeutic benefit, there remains no substitute for the natural properties of proteins and their peptide subunits in the majority of biological contexts. The peptide α-helix represents a common structural motif that mediates communication between signaling proteins. Because peptides can lose their shape when taken out of context, developing chemical interventions to stabilize their bioactive structure remains an active area of research. The all-hydrocarbon staple has emerged as one such solution, conferring α-helical structure, protease resistance, cellular penetrance, and biological activity upon successful incorporation of a series of design and application principles. Here, we describe our more than decade-long experience in developing stapled peptides as biomedical research tools and prototype therapeutics, highlighting lessons learned, pitfalls to avoid, and keys to success.
Figures
Similar articles
-
Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.ACS Chem Biol. 2015 Sep 18;10(9):2149-57. doi: 10.1021/acschembio.5b00214. Epub 2015 Jul 21. ACS Chem Biol. 2015. PMID: 26151238 Free PMC article.
-
Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies.ACS Chem Biol. 2014 Mar 21;9(3):831-7. doi: 10.1021/cb4003305. Epub 2014 Jan 3. ACS Chem Biol. 2014. PMID: 24358963 Free PMC article.
-
Stereochemical effects of all-hydrocarbon tethers in i,i+4 stapled peptides.Bioorg Med Chem Lett. 2009 May 1;19(9):2533-6. doi: 10.1016/j.bmcl.2009.03.022. Epub 2009 Mar 13. Bioorg Med Chem Lett. 2009. PMID: 19332370
-
Hydrocarbon Stapled Antimicrobial Peptides.Protein J. 2018 Feb;37(1):2-12. doi: 10.1007/s10930-018-9755-0. Protein J. 2018. PMID: 29330644 Free PMC article. Review.
-
The Hydrocarbon Staple & Beyond: Recent Advances Towards Stapled Peptide Therapeutics that Target Protein-Protein Interactions.Curr Top Med Chem. 2018;18(7):611-624. doi: 10.2174/1568026618666180518095255. Curr Top Med Chem. 2018. PMID: 29773064 Review.
Cited by
-
Systematic Targeting of Protein-Protein Interactions.Trends Pharmacol Sci. 2016 Aug;37(8):702-713. doi: 10.1016/j.tips.2016.05.008. Epub 2016 Jun 4. Trends Pharmacol Sci. 2016. PMID: 27267699 Free PMC article. Review.
-
Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools.Int J Mol Sci. 2024 Feb 1;25(3):1798. doi: 10.3390/ijms25031798. Int J Mol Sci. 2024. PMID: 38339078 Free PMC article. Review.
-
Targeting recognition surfaces on natural proteins with peptidic foldamers.Curr Opin Struct Biol. 2016 Aug;39:96-105. doi: 10.1016/j.sbi.2016.06.014. Epub 2016 Jul 5. Curr Opin Struct Biol. 2016. PMID: 27390896 Free PMC article. Review.
-
Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization.Chem Sci. 2019 May 16;10(25):6322-6329. doi: 10.1039/c9sc01345h. eCollection 2019 Jul 7. Chem Sci. 2019. PMID: 31341586 Free PMC article.
-
Controlling oncogenic KRAS signaling pathways with a Palladium-responsive peptide.Commun Chem. 2022 Jun 23;5(1):75. doi: 10.1038/s42004-022-00691-7. Commun Chem. 2022. PMID: 36697641 Free PMC article.
References
-
- Presta L. G.; Rose G. D. Helix signals in proteins. Science 1988, 240, 1632–1641. - PubMed
-
- Balaram P. Non-standard amino acids in peptide design and protein engineering. Curr. Opin. Struct. Biol. 1992, 2, 845–851.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
