Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling

Semin Cancer Biol. 2015 Feb;30:13-20. doi: 10.1016/j.semcancer.2014.02.003. Epub 2014 Mar 4.


The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life.

Keywords: Cell-cycle; Chemotherapy; Hybrid multiscale model; Hypoxia; Radiation therapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Medical Oncology / methods*
  • Medical Oncology / trends
  • Models, Theoretical*
  • Neoplasms* / mortality
  • Neoplasms* / pathology
  • Neoplasms* / therapy
  • Systems Biology / methods*
  • Systems Biology / trends