De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts

Cell Rep. 2014 Mar 27;6(6):1046-1058. doi: 10.1016/j.celrep.2014.02.013. Epub 2014 Mar 6.

Abstract

The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell "reprogramming factors" in a wide spectrum of tissues. We report that transient intestinal expression of these factors-Pdx1, MafA, and Ngn3 (PMN)-promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into "neoislets" below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal "organoids" stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / physiology
  • Humans
  • Insulin / biosynthesis*
  • Insulin-Secreting Cells / cytology*
  • Insulin-Secreting Cells / metabolism
  • Intestinal Mucosa / metabolism
  • Intestines / cytology*
  • Islets of Langerhans / cytology*
  • Islets of Langerhans / metabolism
  • Mice
  • Mice, Transgenic

Substances

  • Insulin