Evolutionary insights into the origin of innate and adaptive immune systems: different shades of grey

Asian Pac J Allergy Immunol. 2014 Mar;32(1):3-15.

Abstract

To struggle for survival, all living organisms, from protists to humans, must defend themselves from attack by predators. From the time when life began around 3,500 million years ago, all living cells have evolved mechanisms and strategies to optimally defend themselves, while the invaders also need to survive by evading these immune defenses. The end results would be healthy co-evolution of both parties. Classically, immune host defense is divided into two main categories, namely, innate and adaptive systems. It is well documented that while vertebrates possess both systems, invertebrates and prokaryotes like bacteria and archaea depend almost exclusively on the innate immune functions. Although the adaptive immune system like antibodies and cellular immunity or their equivalents are believed to have evolved at the time when the vertebrates first appeared about 550 million years ago, more recent information from molecular and genomic studies suggest that different forms of adaptive immune system may also be present in the invertebrates as well. These forms of "adaptive" immune system exhibit, for instance, limited degrees of memory, diversity and similarities of their immune receptors with the immunoglobulin domains of the conventional adaptive immune system of vertebrates. Organized lymphoid tissues have been identified in all vertebrates. Very recent molecular and genetic data further suggest that a special type of adaptive system functioning like RNAi of vertebrates is also present in the very ancient form of life like the bacteria and archaea. In this review, I provide some insights, based on recent information gathering from evolutionary data of innate and adaptive immune receptors of invertebrate and vertebrate animals that should convince the readers that our current view on the innate and adaptive immunity may need to be modified. The distinction between the two systems should not be thought of in terms of a "black and white" phenomenon anymore, as recent molecular and genomic information points to the fact that a line of distinction is not as sharp as it was once thought to be, but it is blurred by different shades of grey.

Publication types

  • Review

MeSH terms

  • Adaptive Immunity / immunology*
  • Animals
  • Biological Evolution
  • Humans
  • Immunity, Innate / immunology*
  • Invertebrates / immunology
  • Vertebrates / immunology