[Sn-glycerol-3-phosphate acyltransferases (GPATs) in plants]

Yi Chuan. 2013 Dec;35(12):1352-9. doi: 10.3724/sp.j.1005.2013.01352.
[Article in Chinese]

Abstract

Sn-glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA) in an acyl-CoA or acyl-ACP-dependent manner, which is the initial and rate-determining step of TAG biosynthetic pathway. Some GPATs have sn-2 transfer activity. Part members of the GPAT gene family have been cloned from different plant species. Based on their subcellular localizations, GPATs can be classified into three types, plastid GPATs, mitochondria GPATs and endoplasmic reticulum GPATs. GPATs exhibit diverse biochemical properties and are involved in synthesis of several lipids such as TAG, suberin, and cutin which play important roles in the growth and development of plants. This review summarized the current understanding of the chromosomal locus and gene structure of GPAT genes and the subcellular localization, sn-2 regiospecificity, substrates specialty, and functions of GPATs in plants.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Glycerol-3-Phosphate O-Acyltransferase / genetics
  • Glycerol-3-Phosphate O-Acyltransferase / metabolism*
  • Plants / enzymology*
  • Plants / genetics
  • Plants / metabolism*
  • Signal Transduction / genetics
  • Signal Transduction / physiology

Substances

  • Glycerol-3-Phosphate O-Acyltransferase