Background: Friction blister research has focused on prevention and treatment approaches rather than exploring the pathophysiology of the friction blister. Increased skin hydration has been purported to be a key risk factor in friction blister development. This study aimed to test the effect of increased skin surface hydration on the risk of friction blister creation.
Methods: The skin on one foot was hydrated by soaking the foot in water. Intermittent loading was carried out until an observable change of 3°C was evident using infrared thermography. The contra lateral foot acted as a control. Skin hydration and elasticity was measured using electrical capacitance and negative pressure respectively.
Results: The rate of temperature change of the hydrated group was significantly greater than that of the non-hydrated foot group (P = 0.001) and showed a strong positive correlation (r = 0.520) with skin surface hydration. Weak negative correlations were seen between skin elasticity and rate of temperature change in response to load application (r = -0.166) and skin surface hydration and elasticity at baseline (r = -0.195).
Conclusion: In controlled experimental conditions increased skin surface hydration increases the rate of temperature change of the skin in response to load application and consequently increases the risk of blister creation.
Keywords: blister; elasticity; foot; friction; hydration; inflammation; thermography.
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.