Akebia trifoliata var. australis seed oil (ASO) was used as an edible oil in China. However, in-depth research studies on ASO have yet to be conducted for production of plastic fats in food industry. In this work, an immobilized lipase from Thermomyces lanuginosus (TL IM) was employed to catalyze palm stearin (PS) with different ratios of ASO in a laboratory-scale operation at 60 °C. The physical properties [e.g., fatty acid profile, slip melting point (SMP), solid fat content (SFC), polymorphic form, and microstructure] of physical blends (PBs) were analyzed and compared with those of the interesterified products (IPs). Results showed that SMPs of IPs (33.20-37.60 °C) decreased compared with those of PBs (48.03-49.30 °C). Meanwhile, IPs showed a good SFC range from 16.11% to 28.29% at 25 °C with mostly β' polymorphic forms determined by X-ray diffraction analysis. It should be mentioned that no trans fatty acids (TFAs) were detected in any products, suggesting much more health-benefits of IPs. Texture tests showed that PBs (3318.19 ± 86.67 g) were markedly harder than IPs (557.02 ± 12.75 g). Conclusively, our study demonstrated that ASO can be utilized to produce trans-free plastic fats with good qualities through lipase-catalyzed interesterification.
Keywords: Akebia trifoliata var. australis seed oil; interesterification; plastic fat; trans-free fatty acids.