Mutated epidermal growth factor receptor (EGFR) and signaling pathways were associated with multiple brain and intra-pulmonary metastases, oncogenic progression and metastasis. However, features of metastasis to other organs and the independent prognostic influence of metastatic lesions were not elucidated in patients with lung cancer harboring EGFR mutations. Between January 2007 and April 2012, we treated 277 patients diagnosed with stage IV lung adenocarcinoma. Studied were 246 patients with available tumor EGFR mutation data who also underwent radiographic evaluation of lung, abdominal, brain, and bone metastases. The EGFR mutated group (N = 98) had significantly more metastatic lesions in the brain and bone than the wild-type group (N = 148): brain, 3 (1-93) versus 2 (1-32) median (range), P = 0.023; bone, 3 (1-43) versus 2 (1-27), P = 0.035, respectively. In addition, EGFR mutations were significantly more frequent in patients with multiple than non-multiple lung metastases (24/40 vs. 12/42, P = 0.004). Multivariate analysis showed that bone metastasis was a significant independent negative predictive factor of overall survival (OS) in patients with mutated [hazard ratio (HR) 2.04; 95 % confidence interval (CI) 1.17-3.64; P = 0.011] and wild-type EGFR (HR 2.09; 95 % CI 1.37-3.20; P < 0.001). In conclusion, patients with mutated EGFR had more lung, brain, and bone metastases, and bone metastasis was an independent negative predictor of OS.