Informational requirements for transcriptional regulation

J Comput Biol. 2014 May;21(5):373-84. doi: 10.1089/cmb.2014.0032. Epub 2014 Apr 1.

Abstract

Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites / genetics
  • Computational Biology / methods
  • Evolution, Molecular
  • Gene Expression Regulation / genetics*
  • Genomics / methods
  • Promoter Regions, Genetic / genetics
  • Protein Binding / genetics
  • Transcription Factors / genetics
  • Transcription, Genetic / genetics*

Substances

  • Transcription Factors