Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo
- PMID: 24706806
- PMCID: PMC3992648
- DOI: 10.1073/pnas.1400568111
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo
Abstract
Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.Mol Cell Biol. 2008 Apr;28(7):2283-94. doi: 10.1128/MCB.02021-07. Epub 2008 Jan 22. Mol Cell Biol. 2008. PMID: 18212055 Free PMC article.
-
Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development.EMBO Rep. 2021 Feb 3;22(2):e51127. doi: 10.15252/embr.202051127. Epub 2021 Jan 7. EMBO Rep. 2021. PMID: 33410253 Free PMC article.
-
Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells.Mol Biol Cell. 2009 Jun;20(11):2796-808. doi: 10.1091/mbc.e09-01-0011. Epub 2009 Apr 15. Mol Biol Cell. 2009. PMID: 19369414 Free PMC article.
-
What is the function of centrioles?J Cell Biochem. 2007 Mar 1;100(4):916-22. doi: 10.1002/jcb.21117. J Cell Biochem. 2007. PMID: 17115414 Review.
-
Mitosis in the human embryo: the vital role of the sperm centrosome (centriole).Histol Histopathol. 1997 Jul;12(3):827-56. Histol Histopathol. 1997. PMID: 9225167 Review.
Cited by
-
Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4.Science. 2015 Jun 5;348(6239):1155-60. doi: 10.1126/science.aaa5111. Epub 2015 Apr 30. Science. 2015. PMID: 25931445 Free PMC article.
-
Nedaplatin sensitization of cisplatin-resistant human non-small cell lung cancer cells.Oncol Lett. 2016 Apr;11(4):2566-2572. doi: 10.3892/ol.2016.4276. Epub 2016 Feb 24. Oncol Lett. 2016. PMID: 27073518 Free PMC article.
-
GM130 Regulates Golgi-Derived Spindle Assembly by Activating TPX2 and Capturing Microtubules.Cell. 2015 Jul 16;162(2):287-299. doi: 10.1016/j.cell.2015.06.014. Epub 2015 Jul 9. Cell. 2015. PMID: 26165940 Free PMC article.
-
Centrioles control the capacity, but not the specificity, of cytotoxic T cell killing.Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4310-4319. doi: 10.1073/pnas.1913220117. Epub 2020 Feb 10. Proc Natl Acad Sci U S A. 2020. PMID: 32041868 Free PMC article.
-
A New Mode of Mitotic Surveillance.Trends Cell Biol. 2017 May;27(5):314-321. doi: 10.1016/j.tcb.2017.01.004. Epub 2017 Feb 7. Trends Cell Biol. 2017. PMID: 28188027 Free PMC article. Review.
References
-
- Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121(Suppl 1):1–84. - PubMed
-
- Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: Centrosomics brings new understanding. Nat Rev Mol Cell Biol. 2007;8(6):451–463. - PubMed
-
- Kirkham M, Müller-Reichert T, Oegema K, Grill S, Hyman AA. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell. 2003;112(4):575–587. - PubMed
-
- Leidel S, Gönczy P. SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell. 2003;4(3):431–439. - PubMed
-
- Basto R, et al. Flies without centrioles. Cell. 2006;125(7):1375–1386. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
