TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells

J Biol Chem. 2014 May 16;289(20):14178-93. doi: 10.1074/jbc.M114.567743. Epub 2014 Apr 7.

Abstract

TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.

Keywords: Cytokine; DNA Damage Response; Nontargeted Effects; Radiation Biology; Receptors; Tumor Necrosis Factor (TNF).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology*
  • Bystander Effect / drug effects
  • Bystander Effect / radiation effects
  • Endothelial Progenitor Cells / cytology*
  • Endothelial Progenitor Cells / drug effects
  • Endothelial Progenitor Cells / metabolism*
  • Endothelial Progenitor Cells / radiation effects
  • Gene Knockout Techniques
  • Histones / metabolism
  • Insulin-Like Growth Factor I / metabolism
  • Interleukin-1alpha / pharmacology
  • Ligands
  • Mice
  • Receptors, Tumor Necrosis Factor, Type I / deficiency
  • Receptors, Tumor Necrosis Factor, Type I / genetics
  • Receptors, Tumor Necrosis Factor, Type I / metabolism
  • Receptors, Tumor Necrosis Factor, Type II / deficiency
  • Receptors, Tumor Necrosis Factor, Type II / genetics
  • Receptors, Tumor Necrosis Factor, Type II / metabolism*
  • Signal Transduction* / drug effects
  • Signal Transduction* / radiation effects
  • Time Factors
  • Tumor Necrosis Factor-alpha / metabolism*
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • H2AX protein, mouse
  • Histones
  • Interleukin-1alpha
  • Ligands
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Tumor Necrosis Factor-alpha
  • Insulin-Like Growth Factor I