Superparamagnetic nanoparticle delivery of DNA vaccine
- PMID: 24715289
- DOI: 10.1007/978-1-4939-0410-5_12
Superparamagnetic nanoparticle delivery of DNA vaccine
Abstract
The efficiency of delivery of DNA vaccines is often relatively low compared to protein vaccines. The use of superparamagnetic iron oxide nanoparticles (SPIONs) to deliver genes via magnetofection shows promise in improving the efficiency of gene delivery both in vitro and in vivo. In particular, the duration for gene transfection especially for in vitro application can be significantly reduced by magnetofection compared to the time required to achieve high gene transfection with standard protocols. SPIONs that have been rendered stable in physiological conditions can be used as both therapeutic and diagnostic agents due to their unique magnetic characteristics. Valuable features of iron oxide nanoparticles in bioapplications include a tight control over their size distribution, magnetic properties of these particles, and the ability to carry particular biomolecules to specific targets. The internalization and half-life of the particles within the body depend upon the method of synthesis. Numerous synthesis methods have been used to produce magnetic nanoparticles for bioapplications with different sizes and surface charges. The most common method for synthesizing nanometer-sized magnetite Fe3O4 particles in solution is by chemical coprecipitation of iron salts. The coprecipitation method is an effective technique for preparing a stable aqueous dispersions of iron oxide nanoparticles. We describe the production of Fe3O4-based SPIONs with high magnetization values (70 emu/g) under 15 kOe of the applied magnetic field at room temperature, with 0.01 emu/g remanence via a coprecipitation method in the presence of trisodium citrate as a stabilizer. Naked SPIONs often lack sufficient stability, hydrophilicity, and the capacity to be functionalized. In order to overcome these limitations, polycationic polymer was anchored on the surface of freshly prepared SPIONs by a direct electrostatic attraction between the negatively charged SPIONs (due to the presence of carboxylic groups) and the positively charged polymer. Polyethylenimine was chosen to modify the surface of SPIONs to assist the delivery of plasmid DNA into mammalian cells due to the polymer's extensive buffering capacity through the "proton sponge" effect.
Similar articles
-
Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.Langmuir. 2011 Apr 5;27(7):3703-12. doi: 10.1021/la104479c. Epub 2011 Mar 1. Langmuir. 2011. PMID: 21361304
-
Polyethyleneimine-associated polycaprolactone-Superparamagnetic iron oxide nanoparticles as a gene delivery vector.J Biomed Mater Res B Appl Biomater. 2017 Jan;105(1):145-154. doi: 10.1002/jbm.b.33519. Epub 2015 Oct 6. J Biomed Mater Res B Appl Biomater. 2017. PMID: 26443109
-
Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery.Langmuir. 2012 Feb 21;28(7):3542-52. doi: 10.1021/la204529u. Epub 2012 Feb 7. Langmuir. 2012. PMID: 22242960
-
Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.Int J Pharm. 2015 Dec 30;496(2):191-218. doi: 10.1016/j.ijpharm.2015.10.058. Epub 2015 Oct 28. Int J Pharm. 2015. PMID: 26520409 Review.
-
Iron oxide nanoparticles for targeted cancer imaging and diagnostics.Nanomedicine. 2012 Apr;8(3):275-90. doi: 10.1016/j.nano.2011.08.017. Epub 2011 Sep 17. Nanomedicine. 2012. PMID: 21930108 Review.
Cited by
-
PEI-PLGA nanoparticles significantly enhanced the immunogenicity of IsdB137-361 proteins from Staphylococcus aureus.Immun Inflamm Dis. 2023 Jul;11(7):e928. doi: 10.1002/iid3.928. Immun Inflamm Dis. 2023. PMID: 37506158 Free PMC article.
-
Current Status and Challenges of Vaccination Therapy for Glioblastoma.Mol Cancer Ther. 2023 Apr 3;22(4):435-446. doi: 10.1158/1535-7163.MCT-22-0503. Mol Cancer Ther. 2023. PMID: 36779991 Free PMC article.
-
Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment.Pharmaceutics. 2022 Aug 12;14(8):1680. doi: 10.3390/pharmaceutics14081680. Pharmaceutics. 2022. PMID: 36015306 Free PMC article.
-
Hybrid Radiobioconjugated Superparamagnetic Iron Oxide-Based Nanoparticles for Multimodal Cancer Therapy.Pharmaceutics. 2021 Nov 2;13(11):1843. doi: 10.3390/pharmaceutics13111843. Pharmaceutics. 2021. PMID: 34834258 Free PMC article.
-
Nanoparticle systems for cancer vaccine.Nanomedicine (Lond). 2019 Mar;14(5):627-648. doi: 10.2217/nnm-2018-0147. Epub 2019 Feb 26. Nanomedicine (Lond). 2019. PMID: 30806568 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
