Preparation and evaluation of the effect of Fe3 O4 @piroctone olamine magnetic nanoparticles on matrix metalloproteinase-2: a preliminary in vitro study

Biotechnol Appl Biochem. 2014 Nov-Dec;61(6):676-82. doi: 10.1002/bab.1231.

Abstract

In the present study, Fe3 O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe(2+) and Fe(3+) ions and used as a nanocarrier for the production of piroctone-olamine-loaded Fe3 O4 nanoparticles (Fe3 O4 @PO NPs). The nanocrystalline structure of the prepared iron oxide species was confirmed by the X-ray diffraction spectroscopy method. Particle size distribution analysis showed that the size of Fe3 O4 @PO NPs was in the range of 5-55 nm. The magnetization curve of Fe3 O4 @PO NPs (with saturation magnetization of 28.2 emu/g) confirmed its ferromagnetic property. Loading of PO on the surface of Fe3 O4 NPs qualitatively verified by Fourier transform infrared spectrum obtained from Fe3 O4 @PO NPs. Cytotoxicity studies on the human fibrosarcoma cell line (HT-1080) revealed higher inhibitory effect of Fe3 O4 @PO NPs (50% cell death [IC50 ] of 8.1 µg/mL) as compared with Fe3 O4 NPs (IC50 of 117.1 µg/mL) and PO (IC50 of 71.2 µg/mL) alone. In the case of human normal fibroblast (Hs68), the viability percentage was found to be 75% in the presence of Fe3 O4 @PO NPs (120 µg/mL). Gelatin zymography showed 17.2% and 34.6% inhibition of matrix metalloproteinase-2 (MMP-2) in the presence of Fe3 O4 @PO and PO, respectively, at the same concentration of 40 µg/mL, whereas Fe3 O4 NPs did not inhibit MMP-2 at any concentration.

Keywords: Fe3O4; HT-1080; magnetic nanoparticles; matrix metalloproteinase-2; piroctone olamine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Drug Combinations
  • Ethanolamines / chemical synthesis
  • Ethanolamines / chemistry*
  • Ethanolamines / pharmacology
  • Ferric Compounds / chemical synthesis
  • Ferric Compounds / chemistry
  • Ferric Compounds / pharmacology*
  • Fibroblasts / drug effects
  • Fibrosarcoma / drug therapy
  • Fibrosarcoma / pathology
  • Humans
  • Magnetite Nanoparticles / chemistry*
  • Matrix Metalloproteinase 2 / chemistry*
  • Pyridones / chemical synthesis
  • Pyridones / chemistry*
  • Pyridones / pharmacology
  • X-Ray Diffraction

Substances

  • Drug Combinations
  • Ethanolamines
  • Ferric Compounds
  • Magnetite Nanoparticles
  • Pyridones
  • ferric oxide
  • piroctone olamine
  • Matrix Metalloproteinase 2