Background: Maternal tobacco smoke (MTS) predisposes human and rat offspring to visceral obesity in early adulthood. Glucocorticoid excess also causes visceral obesity. We hypothesized that in utero MTS would increase visceral adiposity and alter the glucocorticoid pathway in young adult rats.
Methods: We developed a novel model of in utero MTS exposure in pregnant rats by exposing them to cigarette smoke from E11.5 to term. Neonatal rats were cross-fostered to control dams and weaned to standard rat chow through young adulthood (postnatal day 60).
Results: We demonstrated increased visceral adiposity (193%)*, increased visceral adipose 11-β hydroxysteroid dehydrogenase 1 mRNA (204%)*, increased serum corticosterone (147%)*, and no change in glucocorticoid receptor protein in adult male MTS rat offspring. Female rats exposed to MTS in utero demonstrated no change in visceral or subcutaneous adiposity, decreased serum corticosterone (60%)*, and decreased adipose glucocorticoid receptor protein (66%)*. *P < 0.05.
Conclusion: We conclude that in utero MTS exposure increased visceral adiposity and altered in the glucocorticoid pathway in a sex-specific manner. We speculate that in utero MTS exposure programs adipose dysfunction in adult male rat offspring via alteration in the glucocorticoid pathway.