Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Mar;16(1):93-102.
doi: 10.31887/DCNS.2014.16.1/ffroehlich.

Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation

Affiliations
Review

Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation

Flavio Fröhlich. Dialogues Clin Neurosci. 2014 Mar.

Abstract

Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

La actividad sincronizada de las neuronas corticales genera campos eléctricos débiles que se miden rutinariamente en humanos y en modelos animales mediante la electroencefalografía y los potenciales de campo locales. Tradicíonalmente, estos campos eléctricos endógenos se han considerado un epifenómeno de la actividad cerebral. Trabajos recientes han demostrado con sorpresa que las redes corticales activas son sensibles a pequeños cambios del voltaje de la membrana de un gran número de neuronas mediante campos eléctricos. Al mismo tiempo, la estimulación cerebral no invasora con campos eléctricos exógenos débiles (estimulación transcraneal con corriente, ETC) ha experimentado un renacimíento debído al amplio alcance de sus posibles aplicaciones en la modulación de la actividad cerebral para el mejoramiento cognitivo y el tratamiento de los trastornos cerebrales. Esta revisión tiene como objetivo relacionar los desarrollos recientes en el estudio de los campos eléctricos endógenos y exógenos con especial atención a la estimulación rítmica para la modulación de las oscilaciones corticales. El propósito principal es proporcionar el punto de partida para el empleo de un diseño racional para el desarrollo de nuevas terapias basadas en el mecanismo de la ETC mediante la estimulación transcraneal con corriente alterna para el tratamiento de enfermedades psiquiátricas.

L'activité neuronale synchronisée dans le cortex génère de faibles champs électriques mesurés couramment dans des modèles humains et animaux sous forme d'électroencéphalographie et de potentiels de champs locaux. Traditionnellement, ces champs électriques endogènes sont considérés comme un épiphénomène de l'activité cérébrale. D'après des travaux récents, des réseaux corticaux actifs sont étonnamment sensibles à de petites perturbations du voltage de la membrane d'un grand nombre de neurones par des champs électriques. Simultanément, la stimulation cérébrale non invasive avec de faibles champs électriques exogènes (stimulation transcrânienne par un courant, TCS) a pu renaître grâce à l'importance de ses applications possibles pour moduler l'activité cérébrale dans la stimulation cognitive et le traitement des troubles cérébraux. Cet article a pour but de relier les avancées récentes de l'étude des champs électriques endogènes et exogènes avec un regard particulier sur la stimulation rythmique pour la modulation des oscillations corticales. Le but principal est de fournir le point de départ d'une procédure rationnelle de développement de traitements nouveaux, dont les mécanismes sont élucidés, fondés sur la stimulation transcrânienne par courant alternatif, pour le traitement des maladies psychiatriques.

Keywords: feedback electric field; magnetic resonance imaging; neuronal network; transcranial alternating current stimulation.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Vertical integration of spatial scales from molecules (nanometer scale) all the way to the whole brain (centimeter scale). Integration of findings from the study of the brain at these different levels may represent the most promising approach to understand how neural activity gives rise to behavior and how impaired neural activity causes disease. This review focuses on the network level (at the mesoscopic scale) that is sandwiched between the microscopic and the macroscopic levels.
Figure 2.
Figure 2.. Schematic representation of feedforward and feedback control of complex systems. Feedforward input is predetermined and independent of the response of the system to the input. Examples of feedforward signals in the context of this review are exogenous electric fields that are applied to animal preparations or humans in the form of TCS. Feedback is defined as input that depends of the state or output of the system to be controlled. Endogenous electric fields fall in this category since the neuronal activity of a network generates an electric field that in turn targets again the same neurons that generate the activity in the first place. EEG, electroencephalogram; LFP, local field potential; TCS, transcranial current stimulation
Figure 3.
Figure 3.. Illustration of how sparse, nonsynchronized activity does not generate a pronounced electric field and therefore is likely unaltered by the proposed feedback between neuronal activity and electric fields. Synchronized activity generates a more pronounced electric field and is therefore able to use the resulting endogenous electric field to further sustain and amplify the ongoing synchronized activity. EEG, electroencephalogram; EF, electric field
Figure 4.
Figure 4.. Arnold's tongues. Effects of periodic perturbations are limited to stimulation frequencies close to the intrinsic (fundamental) frequency and its harmonics. Inverted triangles (“tongues”) delimit areas where for increasing stimulation amplitude, a broader range of stimulation frequencies are effective. f, frequency

Similar articles

Cited by

References

    1. Churchland PS., Sejnowski TJ. The Computational Brain. Cambridge, MA: MIT Press; 1992
    1. Ogawa S., Lee TM., Kay AR., Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–9872. - PMC - PubMed
    1. Raichle ME., MacLeod AM., Snyder AZ., Powers WJ., Gusnard DA., Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–682. - PMC - PubMed
    1. Yoo SS., Bystritsky A., Lee JH., et al Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56:1267–1275. - PMC - PubMed
    1. Tufail Y., Matyushov A., Baldwin N., et al Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–694. - PubMed

Publication types

LinkOut - more resources