Detailed immunoautoradiographic mapping of enkephalinase (EC in rat central nervous system: comparison with enkephalins and substance P

Neuroscience. 1989;30(2):339-76. doi: 10.1016/0306-4522(89)90258-3.


The metallopeptidase enkephalinase known to participate in the inactivation of endogenous enkephalins and, possibly, other neuropeptides such as tachykinins, was visualized by autoradiography using a [125I]iodinated monoclonal antibody. A detailed mapping of the enzyme in rat brain and spinal cord was established on 10-micron serial sections prepared in a frontal plane as well as a few sections in a sagittal plane. On adjacent sections, and for the purpose of comparison, substance P-like and enkephalin-like immunoreactivities were also visualized by autoradiography using a 125I-monoclonal antibody and a polyclonal antibody detected by a secondary 125I-anti-rabbit antibody respectively. Histological structures were identified on adjacent Nissl-stained sections. Using the highly sensitive 125I-probe, enkephalinase immunoreactivity was found to be distributed in a markedly heterogeneous manner in all areas of the central nervous system. Immunoreactivity was undetectable in white matter areas, for example the corpus callosum or fornix, and had a laminar pattern in, for example, the cerebral cortex or hippocampal formation. Hence, although immunodetection was not performed at the cellular level, a major neuronal localization of the peptidase is suggested. The latter is consistent with the detection of a strong immunoreactivity in a pathway linking the striatum to the globus pallidum, the entopeduncular nucleus and the substantia nigra, as well as with a series of biochemical and lesion data. The strong immunoreactivity also present in choroid plexuses and ependymal cells as well as in the intermediate lobe and in scattered cells of the anterior lobe of the pituitary suggests that populations of glial and endocrine cells also express the peptidase. The highest density of enkephalinase immunoreactivity was observed in basal ganglia and limbic areas (caudate putamen, globus pallidus, nucleus accumbens, olfactory tubercles) as well as in areas involved in pain control mechanisms (superficial layers of the spinal nucleus of the trigeminal nerve or of the dorsal horn of the spinal cord) which also display the highest immunoreactivities for both enkephalins and substance P (except in globus pallidus for the latter). These localizations account for the opioid-like analgesic and motor effects of enkephalinase inhibitors inasmuch as a selective or predominant participation of the peptidase in enkephalin inactivation is assumed. A number of other areas appear richly endowed in both enkephalinase and enkephalins whereas substance P is hardly detectable. This is particularly the case for the olfactory bulb, bed nucleus of the accessory olfactory tract, the cerebellum (where enkephalinase mainly occurs in the molecular layer) and the hippocampal formation (namely in the molecular layer of the dentate gyrus).(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Autoradiography
  • Brain Mapping
  • Central Nervous System / enzymology*
  • Central Nervous System / metabolism
  • Enkephalins / metabolism*
  • Immunohistochemistry
  • Male
  • Neprilysin / metabolism*
  • Rats
  • Rats, Inbred Strains
  • Substance P / metabolism*


  • Antibodies, Monoclonal
  • Enkephalins
  • Substance P
  • Neprilysin