Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 16;9(4):e94459.
doi: 10.1371/journal.pone.0094459. eCollection 2014.

Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa

Affiliations

Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa

Elliud Muli et al. PLoS One. .

Abstract

In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Geographic location of surveyed apiaries.
Twenty-four apiaries were surveyed throughout Kenya with an additional three apiaries (25–27), see supplemenatry material, surveyed for ecological effects on colony health. The location and numerical designation of the apiaries is indicated on the map.
Figure 2
Figure 2. Association of Varroa infestation with elevation and colony size.
A. Levels of Varroa mites were positively correlated with elevation, with colonies at higher elevations having significantly higher average numbers of Varroa (r(53) = 0.44, p = 0.001). B. Levels were also positively correlated with colony size ((48) = 0.35, p = 0.013). Varroa counts were converted to logarithmic scale.
Figure 3
Figure 3. Association of viral diversity with colony size and Varroa.
A. Colony size (the number of frames of bees) was not affected by viral diversity (the number of viruses in a colony), H(2) = 2.74, p = 0.254. B. However, colonies with different number of viruses had significantly different numbers of Varroa (H(2) = 13.10; p = 0.0014). Colonies with 1 or 2 viruses had significantly higher Varroa loads than colonies that had no viruses (p<0.05, Wilcoxon pairwise tests, different letters denote significant differences). The number of colonies in each group is indicated at the bottom of each bar. Varroa counts were converted to logarithmic scale.
Figure 4
Figure 4. Association of hygienic behavior with colony location, size, parasite and pathogen loads.
A. There were no significant correlations between hygienic behavior and elevation (r(35) = −0.18, p = 0.289). B. Hygienic behavior was not correlated with colony size (r(35) = −0.22, p = 0.196). C. There was, however, a significant negative correlation between hygienic behavior and the numbers of Varroa in these colonies (r(35) = −0.42, p = 0.011; Varroa counts were converted to logarithmic scale). D. Hygienic behavior was also significantly associated with viral diversity (H(2, 34) = 6.43, p = 0.040); levels were lower in colonies with 1 type of virus versus colonies with 0 or 2 viruses (p<0.05, Wilcoxon pairwise tests, different letter denote significant differences). The number of colonies in each group is indicated at the bottom of each bar.

Similar articles

Cited by

References

    1. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, et al. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B-Biological Sciences 274: 303–313. - PMC - PubMed
    1. Eilers EJ, Kremen C, Greenleaf SS, Garber AK, Klein AM (2011) Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. Plos One 6. - PMC - PubMed
    1. Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68: 810–821.
    1. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 955–961. - PMC - PubMed
    1. Bhattacharya A (2004) Flower visitor and fruitset of Anacardium occidentole. Annales Botanici Fennici 41: 385–392.

Publication types

Grants and funding

This study was funded by an NSF-BREAD grant (0965441)(http://www.nsf.gov/bio/bread/index.jsp) to J. Tumlinson, M. Frazier, J. Frazier, C. Grozinger, D. Masiga, E. Muli, H. Patch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.