Rapid formation of Ag(n)X(X = S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction

Nanoscale. 2014 Jun 7;6(11):5612-5. doi: 10.1039/c4nr00364k. Epub 2014 Apr 17.

Abstract

This work presents a rapid nanotube fabrication method for a series of silver compounds AgnX, such as Ag2S, AgCl, Ag3PO4, and Ag2C2O4, from pregrown Ag2CO3 nanorod templates. The anion exchange process involved takes place in non-aqueous solutions just at room temperature and completes within 10 minutes. An acid-etching anion exchange reaction mechanism has been proved underneath the transformation process from Ag2CO3 nanorods to AgnX nanotubes by the observation of an intermediate yolk-shell nanostructure. It has been found that the final structure of the products can be conveniently controlled by simply varying the concentration of HnX acids, and the organic solvents employed play a vital role in the formation of the nanotubes by effectively controlling the diffusion rates of different species of reacting ions. As a demonstration, the as-prepared AgCl and Ag3PO4 nanotubes exhibit enhanced photocatalytic activity and favorable recyclability for the photodegradation of rhodamine B (RhB) under visible-light irradiation.

Publication types

  • Research Support, Non-U.S. Gov't