Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans

J Comp Neurol. 1989 Aug 1;286(1):48-70. doi: 10.1002/cne.902860104.


Central termination patterns of primary afferents from the hand and forelimb were studied following subdermal injections of HRP conjugates in macaque monkeys. In the middle layers of the dorsal horn of the spinal cord, afferents from digits 1-5 terminated in a rostrocaudal sequence in separate, elongated columns at cervical levels 5-7. Afferents from the glabrous digits extended to the medial margin of the dorsal gray, while afferents from the dorsal skin of the digits terminated more laterally. Afferents from the dorsal hand and palm terminated lateral to those from the digits, while inputs from the forearm occupied tissue rostral and caudal to the representation of the hand. In the cuneate nucleus, terminations from each digit formed an elongated column that was densely labelled in the central pars rotunda and sparsely labelled in both the rostral and caudal reticular poles. Within the pars rotunda, digits 1-5 were represented in order from lateral to medial. Inputs from the digit tips terminated ventral to inputs from the proximal digits. Afferents from the dorsal skin of the digits terminated in an even more dorsal position, while the most dorsal portion of the pars rotunda related to the glabrous and dorsal hand. Within the pars rotunda, terminations from specific parts of the hand overlapped parcellated clusters of neurons. These clusters were densely reactive for cytochrome oxidase (CO) and were surrounded by myelinated fibers. Much sparser label in the reticular poles was found consistently only after injections in the glabrous digits. Inputs to the poles appeared diffuse and overlapping while preserving some somatotopic order. When treated for CO or stained for Nissl substance or myelin, the pars rotunda of humans showed parcellation patterns that closely resembled the patterns seen in monkeys. From the relationship of inputs to the CO dense cell clusters in monkeys, it was possible to postulate in detail the somatotopic organization of inputs to pars rotunda of humans. The present results provide a comprehensive description of the somatotopic patterns of termination of afferents from the skin of the hand and forearm in the spinal cord and cuneate nucleus of macaque monkeys. A direct relationship of afferent somatotopy and identifiable cell clusters in the pars rotunda of the cuneate nucleus is further demonstrated. Finally, the patterns of cell clusters in the pars rotunda of macaque monkeys and humans suggest that the somatotopic organization of the cuneate nucleus may be very similar in human and nonhuman primates.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Afferent Pathways / anatomy & histology
  • Afferent Pathways / physiology
  • Animals
  • Cholera Toxin
  • Hand / innervation*
  • Horseradish Peroxidase
  • Humans
  • Macaca / anatomy & histology*
  • Macaca fascicularis / anatomy & histology*
  • Macaca fascicularis / physiology
  • Medulla Oblongata / anatomy & histology*
  • Medulla Oblongata / physiology
  • Neurons, Afferent / cytology*
  • Spinal Cord / anatomy & histology*
  • Spinal Cord / physiology
  • Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
  • Wheat Germ Agglutinins


  • Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
  • Wheat Germ Agglutinins
  • Cholera Toxin
  • Horseradish Peroxidase